Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20029629

RESUMO

BackgroundIn December 2019, an outbreak of coronavirus disease (COVID-19) was identified in Wuhan, China and, later on, detected in other parts of China. Our aim is to evaluate the effectiveness of the evolution of interventions and self-protection measures, estimate the risk of partial lifting control measures and predict the epidemic trend of the virus in mainland China excluding Hubei province based on the published data and a novel mathematical model. MethodsA novel COVID-19 transmission dynamic model incorporating the intervention measures implemented in China is proposed. COVID-19 daily data of mainland China excluding Hubei province, including the cumulative confirmed cases, the cumulative deaths, newly confirmed cases and the cumulative recovered cases for the period January 20th-March 3rd, 2020, were archived from the National Health Commission of China (NHCC). We parameterize the model by using the Markov Chain Monte Carlo (MCMC) method and estimate the control reproduction number Rc, as well as the effective daily reproduction ratio Re(t), of the disease transmission in mainland China excluding Hubei province. ResultsThe estimation outcomes indicate that Rc is 3.36 (95% CI 3.20-3.64) and Re(t) has dropped below 1 since January 31st, 2020, which implies that the containment strategies implemented by the Chinese government in mainland China excluding Hubei province are indeed effective and magnificently suppressed COVID-19 transmission. Moreover, our results show that relieving personal protection too early may lead to the spread of disease for a longer time and more people would be infected, and may even cause epidemic or outbreak again. By calculating the effective reproduction ratio, we prove that the contact rate should be kept at least less than 30% of the normal level by April, 2020. ConclusionsTo ensure the epidemic ending rapidly, it is necessary to maintain the current integrated restrict interventions and self-protection measures, including travel restriction, quarantine of entry, contact tracing followed by quarantine and isolation and reduction of contact, like wearing masks, etc. People should be fully aware of the real-time epidemic situation and keep sufficient personal protection until April. If all the above conditions are met, the outbreak is expected to be ended by April in mainland China apart from Hubei province.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-911669

RESUMO

As reported by the World Health Organization, a novel coronavirus (2019-nCoV) was identified as the causative virus of Wuhan pneumonia of unknown etiology by Chinese authorities on 7 January, 2020. In this study, we developed a Bats-Hosts-Reservoir-People transmission network model for simulating the potential transmission from the infection source (probable be bats) to the human infection. Since the Bats-Hosts-Reservoir network was hard to explore clearly and public concerns were focusing on the transmission from a seafood market (reservoir) to people, we simplified the model as Reservoir-People transmission network model. The basic reproduction number (R0) was calculated from the RP model to assess the transmissibility of the 2019-nCoV.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...