Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-470697

RESUMO

Macaques are a commonly used model for studying immunity to human viruses, including for studies of SARS-CoV-2 infection and vaccination. However, it is unknown whether macaque antibody responses recapitulate, and thus appropriately model, the response in humans. To answer this question, we employed a phage-based deep mutational scanning approach (Phage- DMS) to compare which linear epitopes are targeted on the SARS-CoV-2 Spike protein in humans and macaques following either vaccination or infection. We also used Phage-DMS to determine antibody escape pathways within each epitope, enabling a granular comparison of antibody binding specificities at the locus level. Overall, we identified some common epitope targets in both macaques and humans, including in the fusion peptide (FP) and stem helix- heptad repeat 2 (SH-H) regions. Differences between groups included a response to epitopes in the N-terminal domain (NTD) and C-terminal domain (CTD) in vaccinated humans but not vaccinated macaques, as well as recognition of a CTD epitope and epitopes flanking the FP in convalescent macaques but not convalescent humans. There was also considerable variability in the escape pathways among individuals within each group. Sera from convalescent macaques showed the least variability in escape overall and converged on a common response with vaccinated humans in the SH-H epitope region, suggesting highly similar antibodies were elicited. Collectively, these findings suggest that the antibody response to SARS-CoV-2 in macaques shares many features with humans, but with substantial differences in the recognition of certain epitopes and considerable individual variability in antibody escape profiles, suggesting a diverse repertoire of antibodies that can respond to major epitopes in both humans and macaques. Author summaryNon-human primates, including macaques, are considered the best animal model for studying infectious diseases that infect humans. Vaccine candidates for SARS-CoV-2 are first tested in macaques to assess immune responses prior to advancing to human trials, and macaques are also used to model the human immune response to SARS-CoV-2 infection. However, there may be differences in how macaque and human antibodies recognize the SARS-CoV-2 entry protein, Spike. Here we characterized the locations on Spike that are recognized by antibodies from vaccinated or infected macaques and humans. We also made mutations to the viral sequence and assessed how these affected antibody binding, enabling a comparison of antibody binding requirements between macaques and humans at a very precise level. We found that macaques and humans share some responses, but also recognize distinct regions of Spike. We also found that in general, antibodies from different individuals had unique responses to viral mutations, regardless of species. These results will yield a better understanding of how macaque data can be used to inform human immunity to SARS-CoV-2.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-438262

RESUMO

Severe COVID-19 has been associated with T cell lymphopenia 1,2, but no causal effect of T cell deficiency on disease severity has been established. To investigate the specific role of T cells in recovery from SARS-CoV-2 infections we studied rhesus macaques that were depleted of either CD4+, CD8+ or both T cell subsets prior to infection. Peak virus loads were similar in all groups, but the resolution of virus in the T cell-depleted animals was slightly delayed compared to controls. The T cell-depleted groups developed virus-neutralizing antibody responses and also class-switched to IgG. When re-infected six weeks later, the T cell-depleted animals showed anamnestic immune responses characterized by rapid induction of high-titer virus-neutralizing antibodies, faster control of virus loads and reduced clinical signs. These results indicate that while T cells play a role in the recovery of rhesus macaques from acute SARS-CoV-2 infections, their depletion does not induce severe disease, and T cells do not account for the natural resistance of rhesus macaques to severe COVID-19. Neither primed CD4+ or CD8+ T cells appeared critical for immunoglobulin class switching, the development of immunological memory or protection from a second infection.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-436257

RESUMO

The emergence of SARS-CoV-2 variants with enhanced transmissibility, pathogenesis and resistance to vaccines presents urgent challenges for curbing the COVID-19 pandemic. While Spike mutations that enhance virus infectivity or neutralizing antibody evasion may drive the emergence of these novel variants, studies documenting a critical role for interferon responses in the early control of SARS-CoV-2 infection, combined with the presence of viral genes that limit these responses, suggest that interferons may also influence SARS-CoV-2 evolution. Here, we compared the potency of 17 different human interferons against multiple viral lineages sampled during the course of the global outbreak, including ancestral and four major variants of concern. Our data reveal increased interferon resistance in emerging SARS-CoV-2 variants, suggesting that evasion of innate immunity may be a significant, ongoing driving force for SARS-CoV-2 evolution. These findings have implications for the increased lethality of emerging variants and highlight the interferon subtypes that may be most successful in the treatment of early infections. Author SummaryIn less than 2 years since its spillover into humans, SARS-CoV-2 has infected over 220 million people, causing over 4.5 million COVID-19 deaths. High infection rates provided substantial opportunities for the virus to evolve, as variants with enhanced transmissibility, pathogenesis, and resistance to vaccine-elicited neutralizing antibodies have emerged. While much focus has centered on the Spike protein which the virus uses to infect target cells, mutations were also found in other viral proteins that might inhibit innate immune responses. Specifically, viruses encounter a potent innate immune response mediated by the interferons, two of which, IFN2 and IFN{beta}, are being repurposed for COVID-19 treatment. Here, we compared the potency of human interferons against ancestral and emerging variants of SARS-CoV-2. Our data revealed increased interferon resistance in emerging SARS-CoV-2 strains that included the alpha, beta, gamma and delta variants of concern, suggesting a significant, but underappreciated role for innate immunity in driving the next phase of the COVID-19 pandemic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...