RESUMO
Four monitoring campaigns between the years 2009 and 2018 were conducted in Córdoba City, Argentina, to detect toxic metals in PM2.5 samples. The concentrations of As, Cd, Pb, Cu, Cr, Mn, Hg, Ni, and Zn, together with several other elements, were measured. The average metal concentrations followed the order: Zn > Cr > Cu > Mn > Pb > V > Ni > As ~ Sb > Cd > Tl > Pd > Hg > Pt. From the analysis of the temporal variation in the elemental concentration of PM2.5, results show seasonal variations that reach, in general, a maximum in the coldest seasons and a minimum in the warmer seasons. These differences could be explained by the different weather conditions during each season, the influence of the El Niño/La Niña regimen, and the presence of fires on certain sampling dates. The source apportionment analysis performed for the period 2017-2018 showed the contribution to PM2.5 of combustion of heavy fuel oil and diesel-powered vehicles, pet coke, metallurgical and nonferrous industries, paint plant factory, traffic, and natural sources like the soil and road dust. This last analysis completed the assignment of sources for the 10-year period of study. Thus, the results of this work contribute to the implementation of emission reduction strategies in order to decrease the impact of PM2.5 on the environment and the human health.
Assuntos
Poluentes Atmosféricos , Metais Pesados , Argentina , Cidades , Poeira , Monitoramento Ambiental , Humanos , Material ParticuladoRESUMO
Accurate estimates of total global solar irradiance reaching the Earth's surface are relevant since routine measurements are not always available. This work aimed to determine which of the models used to estimate daily total global solar irradiance (TGSI) is the best model when irradiance measurements are scarce in a given site. A model based on an artificial neural network (ANN) and empirical models based on temperature and sunshine measurements were analyzed and evaluated in Córdoba, Argentina. The performance of the models was benchmarked using different statistical estimators such as the mean bias error (MBE), the mean absolute bias error (MABE), the correlation coefficient (r), the Nash-Sutcliffe equation (NSE), and the statistics t test (t value). The results showed that when enough measurements were available, both the ANN and the empirical models accurately predicted TGSI (with MBE and MABE ≤ |0.11| and ≤ |1.98| kWh m-2 day-1, respectively; NSE ≥ 0.83; r ≥ 0.95; and |t values| < t critical value). However, when few TGSI measurements were available (2, 3, 5, 7, or 10 days per month) only the ANN-based method was accurate (|t value| < t critical value), yielding precise results although only 2 measurements per month were available for 1 year. This model has an important advantage over the empirical models and is very relevant to Argentina due to the scarcity of TGSI measurements.
Assuntos
Monitoramento Ambiental/métodos , Modelos Teóricos , Luz Solar , Argentina , Monitoramento Ambiental/estatística & dados numéricos , Redes Neurais de Computação , Análise de Regressão , TemperaturaRESUMO
Revisao sucinta das fluorquinolonas, com ênfase em sua gênese, mecanismo de açao, atividade farmacológica, farmacocinética, efeitos adversos, interaçoes medicamentosas e principais propriedades dos comercializados no Brasil: ciprofloxacino, lemofloxacino, norfloxacino, ofloxacino e pefloxacino.