RESUMO
BACKGROUND: A number of non-coding circular RNAs (circRNAs) have recently been implicated in the modulation of gene expression in cancer models. We therefore sought to explore if circZNF236 has a role in oral squamous cell carcinoma (OSCC). METHODS: We first examined circZNF236 expression in 32 pairs of OSCC and noncancerous tissues. We then investigated a functional role for circZNF236 using knockdown and overexpression approaches in OSCC cancer cell lines. Cell counting kit-8, wound healing, Transwell, and flow cytometry were employed to assess circZNF236 function in vitro. The association between circZNF236 and miR-145-5p, or that between miR-145-5p and malignant brain tumor domain containing 1 (MBTD1) was predicted by bioinformatics and demonstrated by dual-luciferase reporter assays, RNA pull-down assays as well as RNA immunoprecipitation (RIP) assays. A mouse OSCC xenograft model was employed to demonstrate the impacts of circZNF236 inhibition on tumor development in vivo. RESULTS: OSCC tissues and cells had higher levels of circZNF236 expression compared with normal controls. Furthermore, high circZNF236 levels in patients with OSCC correlated with a poor prognosis. CircZNF236 silencing decreased the malignant properties of OSCC cells and suppressed OSCC tumor formation in the mouse model. We then noticed that miR-145-5p can be regulated by circZNF236, and that circZNF2361 promoted OSCC development by absorbing miR-145-5p and consequently upregulating MBTD1 expression. CONCLUSION: CircZNF236 modulates OSCC via the miR-145-5p/MBTD1 axis. These results support the potential of circZNF236 as a treatment target for OSCC.
Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , MicroRNAs , Neoplasias Bucais , Humanos , Animais , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Linhagem Celular Tumoral , Neoplasias Bucais/patologia , Modelos Animais de Doenças , Neoplasias de Cabeça e Pescoço/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Cromossômicas não HistonaRESUMO
The Arabidopsis thaliana endogenous elicitor peptides (AtPeps) are released into the apoplast after cellular damage caused by pathogens or wounding to induce innate immunity by direct binding to the membrane-localized leucine-rich repeat receptor kinases, PEP RECEPTOR1 (PEPR1) and PEPR2. Although the PEPR-mediated signaling components and responses have been studied extensively, the contributions of the subcellular localization and dynamics of the active PEPRs remain largely unknown. We used live-cell imaging of the fluorescently labeled and bioactive pep1 to visualize the intracellular behavior of the PEPRs in the Arabidopsis root meristem. We found that AtPep1 decorated the plasma membrane (PM) in a receptor-dependent manner and cointernalized with PEPRs. Trafficking of the AtPep1-PEPR1 complexes to the vacuole required neither the trans-Golgi network/early endosome (TGN/EE)-localized vacuolar H(+)-ATPase activity nor the function of the brefeldin A-sensitive ADP-ribosylation factor-guanine exchange factors (ARF-GEFs). In addition, AtPep1 and different TGN/EE markers colocalized only rarely, implying that the intracellular route of this receptor-ligand pair is largely independent of the TGN/EE. Inducible overexpression of the Arabidopsis clathrin coat disassembly factor, Auxilin2, which inhibits clathrin-mediated endocytosis (CME), impaired the AtPep1-PEPR1 internalization and compromised AtPep1-mediated responses. Our results show that clathrin function at the PM is required to induce plant defense responses, likely through CME of cell surface-located signaling components.
Assuntos
Arabidopsis/metabolismo , Clatrina/metabolismo , Peptídeos/metabolismo , Transdução de Sinais , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Endocitose , Endossomos/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Meristema/citologia , Meristema/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Modelos Biológicos , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Superfície Celular/metabolismo , Rodaminas/metabolismo , Frações Subcelulares/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Rede trans-Golgi/metabolismoRESUMO
We studied gene expression in 9 sets of paired newborn blood spots stored for 8-10 years in either the frozen state or the unfrozen state. Fewer genes were expressed in unfrozen spots, but the average correlation coefficient for overall gene expression comparing the frozen and unfrozen state was 0.771 (95% CI, 0.700-0.828).
Assuntos
Criopreservação , Congelamento , Perfilação da Expressão Gênica/métodos , Triagem Neonatal , Análise de Sequência com Séries de Oligonucleotídeos/métodos , RNA Mensageiro/sangue , Coleta de Amostras Sanguíneas , Humanos , Recém-Nascido , Fatores de TempoRESUMO
Pre-eclampsia (PE) affects 5-7% of pregnancies in the US, and is a leading cause of maternal death and perinatal morbidity and mortality worldwide. To identify genes with a role in PE, we conducted a large-scale association study evaluating 775 SNPs in 190 candidate genes selected for a potential role in obstetrical complications. SNP discovery was performed by DNA sequencing, and genotyping was carried out in a high-throughput facility using the MassARRAY(TM) System. Women with PE (n = 394) and their offspring (n = 324) were compared with control women (n = 602) and their offspring (n = 631) from the same hospital-based population. Haplotypes were estimated for each gene using the EM algorithm, and empirical p values were obtained for a logistic regression-based score test, adjusted for significant covariates. An interaction model between maternal and offspring genotypes was also evaluated. The most significant findings for association with PE were COL1A1 (p = 0.0011) and IL1A (p = 0.0014) for the maternal genotype, and PLAUR (p = 0.0008) for the offspring genotype. Common candidate genes for PE, including MTHFR and NOS3, were not significantly associated with PE. For the interaction model, SNPs within IGF1 (p = 0.0035) and IL4R (p = 0.0036) gave the most significant results. This study is one of the most comprehensive genetic association studies of PE to date, including an evaluation of offspring genotypes that have rarely been considered in previous studies. Although we did not identify statistically significant evidence of association for any of the candidate loci evaluated here after adjusting for multiple testing using the false discovery rate, additional compelling evidence exists, including multiple SNPs with nominally significant p values in COL1A1 and the IL1A region, and previous reports of association for IL1A, to support continued interest in these genes as candidates for PE. Identification of the genetic regulators of PE may have broader implications, since women with PE are at increased risk of death from cardiovascular diseases later in life.