Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 242(Pt 4): 125053, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37244329

RESUMO

In this study, a simple and scalable mechanical pretreatment was evaluated as means of enhancing the accessibility of cellulose fibers, with the objective of improving the efficiency of enzymatic reactions for the production of cellulose nanoparticles (CNs). In addition, the effects of enzyme type (endoglucanase - EG, endoxylanase - EX, and a cellulase preparation - CB), composition ratio (0-200UEG:0-200UEX or EG, EX, and CB alone), and loading (0 U-200 U) were investigated in relation to CN yield, morphology, and properties. The combination of mechanical pretreatment and specific enzymatic hydrolysis conditions substantially improved CN production yield, reaching up to 83 %. The production of rod-like or spherical nanoparticles and their chemical composition were highly influenced by the enzyme type, composition ratio, and loading. However, these enzymatic conditions had minimal impact on the crystallinity index (approximately 80 %) and thermal stability (Tmax within 330-355 °C). Overall, these findings demonstrate that mechanical pretreatment followed by enzymatic hydrolysis under specific conditions is a suitable method to produce nanocellulose with high yield and adjustable properties such as purity, rod-like or spherical forms, high thermal stability, and high crystallinity. Therefore, this production approach shows promise in producing tailored CNs with the potential for superior performance in various advanced applications, including, but not limited to, wound dressings, drug delivery, thermoplastic composites, 3D (bio)printing, and smart packaging.


Assuntos
Celulase , Nanopartículas , Celulose/química , Hidrólise , Celulase/química , Endo-1,4-beta-Xilanases/química , Nanopartículas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA