Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Tipo de estudo
Intervalo de ano de publicação
1.
Front Biosci (Schol Ed) ; 9(2): 194-229, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28199183

RESUMO

An integrative analysis of miRNA and mRNA expression profiles in left ventricle (LV) of diabetes-induced rats was performed to elucidate the role of miRNAs and their mRNAs target in diabetic cardiomyopathy (DCM). mRNA (GSE4745) and miRNA (GSE44179) datasets were downloaded from Gene Expression Omnibus 2R (GEO2R) and differentially expressed mRNAs and miRNAs were selected. Cardiotoxicity-related mRNAs (n=7) were analyzed by Ingenuity Pathway Analyses 6 (IPA) and regulatory miRNAs (n=639) were identified using TargetScan 7.1. web dataset. The integrative analysis was performed between miRNAs differentially expressed in GSE44179 and regulatory TargetScan-detected miRNAs of mRNAs differentially expressed in GSE4745. Pla2g2a and Hk2 mRNAs were up-and-down regulated, respectively, in GSE4745 on days 3 and 42 after diabetes-induction. The Pla2g2a regulatory miRNAs, rno-miR-877, rno-miR-320 and rno-miR-214, were down-regulated, and Hk2 regulatory miRNAs, rno-miR-17, rno-miR-187, rno-miR-34a, rno-miR-322, rno-miR-188, rno-miR-532 and rno-miR-21, were up-regulated in GSE44179 dataset. These results are suggestive that Pla2g2a and Hk2 mRNAs and their regulatory miRNAs play a role in DCM pathogenesis and they may be potential circulating biomarkers to detect early cardiovascular complications in diabetic patients.


Assuntos
Cardiomiopatias/genética , Diabetes Mellitus/genética , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo , Animais , Cardiomiopatias/metabolismo , Diabetes Mellitus/metabolismo , Regulação para Baixo , MicroRNAs/genética , RNA Mensageiro/genética , Ratos
2.
Front Pharmacol ; 8: 906, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29311920

RESUMO

Clopidogrel is an essential antiplatelet drug used to prevent thrombosis complications associated with atherosclerosis. However, hepatotoxicity is a potential adverse effect related to clopidogrel therapy. Exosome-derived miRNAs may be useful for improved monitoring of drug response and hepatotoxicity risk. In the present study, the expression of several exosomal miRNAs (miR-26a-5p, miR-145-5p, miR-15b-5p, and miR-4701-3p) and cell-derived mRNA targets (PLOD2, SENP5, EIF4G2, HMGA2, STRADB, and TLK1) were evaluated in HepG2 cells treated with clopidogrel (6.25, 12.5, 25, 50, and 100 µM) for 24 and 48 h. Then, clopidogrel cytotoxicity was evaluated by analyzing DNA fragmentation and the cell cycle profile using flow cytometry. Differential expression of exosome-derived miRNAs and cell-derived mRNAs was analyzed by RT-qPCR. Exposure of HepG2 cells to high concentrations of clopidogrel (50 and 100 µM) for 24 h caused significant DNA fragmentation (17.6 and 44.4%, respectively; p < 0.05) and 48 h (26.8 and 48.9%, respectively; p < 0.05), indicating cellular toxicity. Upregulation of miR-26a-5p and downregulation of miR-15b-5p was observed in cells exposed to 100 µM clopidogrel for 24 and 48 h. The miR-26a-5p target mRNAs HMGA2, EIF4G2, STRADB, and SENP5 were downregulated in HepG2 cells following exposure to cytotoxic concentrations of clopidogrel (50 and 100 µM) for 24 h, and HMGA2 levels remained low after 48 h of treatment. TLK1, a target of miR-15b-5p, was downregulated by 50 and 100 µM clopidogrel at 24 h. In conclusion, our results suggest that exposure to high concentrations of clopidogrel modulates the expression of exosomal miR-26a-5p and miR-15b-5p and their target mRNAs in HepG2 cells. Dysregulation of these miRNAs maybe modulate the regulatory pathways involved in clopidogrel-induced liver injury.

3.
Front Biosci (Schol Ed) ; 9: 194-229, 2017. tab, ilus
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IDPCPROD, Sec. Est. Saúde SP | ID: biblio-1062893

RESUMO

An integrative analysis of miRNA and mRNA expression profiles in left ventricle (LV) of diabetes-induced rats was performed to elucidate the role of miRNAs and their mRNAs target in diabetic cardiomyopathy (DCM). mRNA (GSE4745) and miRNA (GSE44179) datasets were downloaded from Gene Expression Omnibus 2R (GEO2R) and differentially expressed mRNAs and miRNAs were selected. Cardiotoxicity-related mRNAs (n=7) were analyzed by Ingenuity Pathway Analyses 6 (IPA) and regulatory miRNAs (n=639) were identified using TargetScan 7.1. web dataset. The integrative analysis was performed between miRNAs differentially expressed in GSE44179 and regulatory TargetScan-detected miRNAs of mRNAs differentially expressed in GSE4745. Pla2g2a and Hk2 mRNAs were up-and-down regulated, respectively, in GSE4745 on days 3 and 42 after diabetes-induction. The Pla2g2a regulatory miRNAs, rno-miR-877, rno-miR-320 and rno-miR-214, were down-regulated, and Hk2 regulatory miRNAs, rno-miR-17, rno-miR-187, rno-miR-34a, rno-miR-322, rno-miR-188, rno-miR-532 and rno-miR-21, were up-regulated in GSE44179 dataset. These results are suggestive that Pla2g2a and Hk2 mRNAs and their regulatory miRNAs play a role in DCM pathogenesis and they may be potential circulating biomarkers to detect early cardiovascular complications in diabetic patients.


Assuntos
Animais , Ratos , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Diabetes Mellitus
4.
Front. pharmacol ; 12(8): 906-906, 2017.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IDPCPROD, Sec. Est. Saúde SP | ID: biblio-1062901

RESUMO

Clopidogrel is an essential antiplatelet drug used to prevent thrombosis complications associated with atherosclerosis. However, hepatotoxicity is a potential adverse effect related to clopidogrel therapy. Exosome-derived miRNAs may be useful for improved monitoring of drug response and hepatotoxicity risk. In the present study, the expression of several exosomal miRNAs (miR-26a-5p, miR-145-5p, miR-15b-5p, and miR-4701-3p) and cell-derived mRNA targets (PLOD2, SENP5, EIF4G2, HMGA2, STRADB, and TLK1) were evaluated in HepG2 cells treated with clopidogrel (6.25, 12.5, 25, 50, and 100 μM) for 24 and 48 h. Then, clopidogrel cytotoxicity was evaluated by analyzing DNA fragmentation and the cell cycle profile using flow cytometry. Differential expression of exosome-derived miRNAs and cell-derived mRNAs was analyzed by RT-qPCR. Exposure of HepG2 cells to high concentrations of clopidogrel (50 and 100 μM) for 24 h caused significant DNA fragmentation (17.6 and 44.4%, respectively; p < 0.05) and 48 h (26.8 and 48.9%, respectively; p < 0.05), indicating cellular toxicity...


Assuntos
Linhagem Celular , MicroRNAs , Trombose das Artérias Carótidas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...