Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22275831

RESUMO

Environmental monitoring of pathogens provides an accurate and timely source of information for public health authorities and policymakers. In the last two years, wastewater sequencing proved to be an effective way of detection and quantification of SARS-CoV-2 variants circulating in population. Wastewater sequencing produces substantial amounts of geographical and genomic data. Proper visualization of spatial and temporal patterns in this data is crucial for the assessment of the epidemiological situation and forecasting. Here, we present a web-based dashboard application for visualization and analysis of data obtained from sequencing of environmental samples. The dashboard provides multi-layered visualization of geographical and genomic data. It allows to display frequencies of detected pathogen variants as well as individual mutation frequencies. The features of WAVES for early tracking and detection of novel variants in the wastewater are demonstrated in an example of BA.1 variant and the signature Spike mutation S:E484A. WAVES dashboard is easily customized through the editable configuration file and can be used for different types of pathogens and environmental samples. AvailabilityWAVES source code is freely available at https://github.com/ptriska/WavesDash under MIT license.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21267633

RESUMO

SARS-CoV-2 surveillance is crucial to identify variants with altered epidemiological properties. Wastewater-based epidemiology (WBE) provides an unbiased and complementary approach to sequencing individual cases. Yet, national WBE surveillance programs have not been widely implemented and data analyses remain challenging. We deep-sequenced 2,093 wastewater samples representing 95 municipal catchments, covering >57% of Austrias population, from December 2020 to September 2021. Our Variant Quantification in Sewage pipeline designed for Robustness (VaQuERo) enabled us to deduce variant abundance from complex wastewater samples and delineate the spatiotemporal dynamics of the dominant Alpha and Delta variants as well as regional clusters of other variants of concern. These results were cross validated by epidemiological records of >130,000 individual cases. Finally, we provide a framework to predict emerging variants de novo and infer variant-specific reproduction numbers from wastewater. This study demonstrates the power of national-scale WBE to support public health and promises particular value for countries without dense individual monitoring. Graphical Abstract O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=165 SRC="FIGDIR/small/21267633v1_ufig1.gif" ALT="Figure 1"> View larger version (49K): org.highwire.dtl.DTLVardef@1044af0org.highwire.dtl.DTLVardef@d3fe2borg.highwire.dtl.DTLVardef@1d3bfa1org.highwire.dtl.DTLVardef@c9fc95_HPS_FORMAT_FIGEXP M_FIG C_FIG

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-455606

RESUMO

Despite tremendous progress in the understanding of COVID-19, mechanistic insight into immunological, disease-driving factors remains limited. We generated maVie16, a mouse-adapted SARS-CoV-2, by serial passaging of a human isolate. In silico modelling revealed how Spike mutations of maVie16 enhanced interaction with murine ACE2. MaVie16 induced profound pathology in BALB/c and C57BL/6 mice and the resulting mouse COVID-19 (mCOVID-19) replicated critical aspects of human disease, including early lymphopenia, pulmonary immune cell infiltration, pneumonia and specific adaptive immunity. Inhibition of the proinflammatory cytokines IFN{gamma} and TNF substantially reduced immunopathology. Importantly, genetic ACE2-deficiency completely prevented mCOVID-19 development. Finally, inhalation therapy with recombinant ACE2 fully protected mice from mCOVID-19, revealing a novel and efficient treatment. Thus, we here present maVie16 as a new tool to model COVID-19 for the discovery of new therapies and show that disease severity is determined by cytokine-driven immunopathology and critically dependent on ACE2 in vivo. Key pointsO_LIThe mouse-adapted SARS-CoV-2 strain maVie16 causes fatal disease in BALB/c mice and substantial inflammation, pneumonia and immunity in C57BL/6 mice C_LIO_LITNF/IFN{gamma} blockade ameliorates maVie16-induced immunopathology C_LIO_LIMaVie16 infection depends on ACE2 and soluble ACE2 inhalation can prevent disease C_LI

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21259587

RESUMO

SARS-CoV-2 has evolved rapidly towards higher infectivity and partial immune escape over the course of the pandemic. This evolution is driven by the enormous virus population, that has infected close to 200 million people by now. Therefore, cost effective and scalable methods are needed to monitor viral evolution globally. Mutation-specific PCR approaches have become inadequate to distinguish the variety of circulating SARS-CoV-2 variants and are unable to detect novel ones. Conversely, whole genome sequencing protocols remain too labor- and cost-intensive to monitor SARS-CoV-2 at the required density. By adapting SARSeq we present a simple, fast, and scalable S-gene tiling pipeline for focused sequencing of the S-gene encoding for the spike protein. This method reports on all sequence positions with known importance for infectivity and immunity, yet scales to >20K samples per run. S-gene tiling is used for nationwide surveillance of SARS-CoV-2 at a density of 10% to 50% of all cases of infection in Austria. SARSeq S-tiling uncovered several infection clusters with variants of concern such as the biggest known cluster of Beta/B.1.351 outside Africa and successfully informed public health measures in a timely manner, allowing their successful implementation. Our close monitoring of mutations further highlighted evolutionary constraints and freedom of the spike protein ectodomain and sheds light on foreseeable evolutionary trajectories.

5.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-423507

RESUMO

CD8+ T cell immunity to SARS-CoV-2 has been implicated in COVID-19 severity and virus control, though direct evidence has been lacking so far. Here, we identified non-synonymous mutations in MHC-I restricted CD8+ T cell epitopes after deep sequencing of 747 SARS-CoV- 2 virus isolates. Mutant peptides exhibited diminished or abrogated MHC-I binding, which was associated with a loss of recognition and functional responses by CD8+ T cells isolated from HLA-matched COVID-19 patients. Our findings highlight the capacity of SARS-CoV-2 to subvert CD8+ T cell surveillance through escape mutations in MHCI-restricted viral epitopes. This provides evolutionary evidence for CD8+ T cell immunity controlling SARS-CoV-2 with consequences for COVID-19 vaccine design.

6.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-204339

RESUMO

Superspreading events shape the COVID-19 pandemic. Here we provide a national-scale analysis of SARS-CoV-2 outbreaks in Austria, a country that played a major role for virus transmission across Europe and beyond. Capitalizing on a national epidemiological surveillance system, we performed deep whole-genome sequencing of virus isolates from 576 samples to cover major Austrian SARS-CoV-2 clusters. Our data chart a map of early viral spreading in Europe, including the path from low-frequency mutations to fixation. Detailed epidemiological surveys enabled us to calculate the effective SARS-CoV-2 population bottlenecks during transmission and unveil time-resolved intra-patient viral quasispecies dynamics. This study demonstrates the power of integrating deep viral genome sequencing and epidemiological data to better understand how SARS-CoV-2 spreads through populations. Graphical Abstract O_FIG_DISPLAY_L [Figure 1] M_FIG_DISPLAY C_FIG_DISPLAY

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...