Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Biol Int ; 47(8): 1314-1326, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37178380

RESUMO

Primordial germ cells (PGCs), are the source of gametes in vertebrates. There are similarities in the development of PGCs of reptiles with avian and mammalian species PGCs development. PGCs culture has been performed for avian and mammalian species but there is no report for reptilian PGCs culture. In vitro culture of PGCs is needed to produce transgenic animals, preservation of endangered animals and for studies on cell behaviour and research on fertility. Reptiles are traded as exotic pets and a source of food and they are valuable for their skin and they are useful as model for medical research. Transgenic reptile has been suggested to be useful for pet industry and medical research. In this research different aspects of PGCs development was compared in three main classes of vertebrates including mammalian, avian and reptilian species. It is proposed that a discussion on similarities between reptilian PGCs development with avian and mammalian species helps to find clues for studies of reptilian PGCs development details and finding an efficient protocol for in vitro culture of reptilian PG.


Assuntos
Técnicas de Cultura de Células , Espécies em Perigo de Extinção , Células Germinativas , Répteis , Células Germinativas/citologia , Répteis/genética , Répteis/crescimento & desenvolvimento , Criopreservação , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Epigênese Genética , Animais
2.
Cells ; 10(6)2021 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-34198768

RESUMO

The ovarian follicle is the basic functional unit of the ovary, comprising theca cells and granulosa cells (GCs). Two different types of GCs, mural GCs and cumulus cells (CCs), serve different functions during folliculogenesis. Mural GCs produce oestrogen during the follicular phase and progesterone after ovulation, while CCs surround the oocyte tightly and form the cumulus oophurus and corona radiata inner cell layer. CCs are also engaged in bi-directional metabolite exchange with the oocyte, as they form gap-junctions, which are crucial for both the oocyte's proper maturation and GC proliferation. However, the function of both GCs and CCs is dependent on proper follicular angiogenesis. Aside from participating in complex molecular interplay with the oocyte, the ovarian follicular cells exhibit stem-like properties, characteristic of mesenchymal stem cells (MSCs). Both GCs and CCs remain under the influence of various miRNAs, and some of them may contribute to polycystic ovary syndrome (PCOS) or premature ovarian insufficiency (POI) occurrence. Considering increasing female fertility problems worldwide, it is of interest to develop new strategies enhancing assisted reproductive techniques. Therefore, it is important to carefully consider GCs as ovarian stem cells in terms of the cellular features and molecular pathways involved in their development and interactions as well as outline their possible application in translational medicine.


Assuntos
Células do Cúmulo/metabolismo , Neovascularização Fisiológica , Células-Tronco/metabolismo , Feminino , Humanos , Síndrome do Ovário Policístico/metabolismo , Insuficiência Ovariana Primária/metabolismo
3.
Front Immunol ; 12: 620494, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34122400

RESUMO

The innate and adaptive immune systems act in concert to protect us from infectious agents and other harmful substances. As a state of temporary or permanent immune dysfunction, immunosuppression can make an organism more susceptible to infection, organ injury, and cancer due to damage to the immune system. It takes a long time to develop new immunomodulatory agents to prevent and treat immunosuppressive diseases, with slow progress. Toll-like receptor 2 (TLR2) agonists have been reported as potential immunomodulatory candidates due to their effective activation of immune responses. It has been demonstrated that thymopentin (TP5) could modulate immunity by binding to the TLR2 receptor. However, the fairly short half-life of TP5 greatly reduces its pharmacological potential for immunosuppression therapy. Although peptide cathelicidin 2 (CATH2) has a long half-life, it shows poor immunomodulatory activity and severe cytotoxicity, which seriously hampers its clinical development. Peptide hybridization is an effective approach for the design and engineering of novel functional peptides because hybrid peptides combine the advantages and benefits of various native peptides. In this study, to overcome all these challenges faced by the parental peptides, six hybrid peptides (CaTP, CbTP, CcTP, TPCa, TPCb, and TPCc) were designed by combining the full-length TP5 with different active fragments of CATH2. CbTP, the most potent TLR2 agonist among the six hybrid peptides, was effectively screened through in silico analysis and in vitro experiments. The CbTP peptide exhibited lower cytotoxicity than either CATH2 or TP5. Furthermore, the immunomodulatory effects of CbTP were confirmed in a CTX-immunosuppressed mouse model, which showed that CbTP has increased immunopotentiating activity and physiological stability compared to the parental peptides. CbTP successfully inhibited immunosuppression and weight loss, increased immune organ indices, and improved CD4+/CD8+ T lymphocyte subsets. In addition, CbTP significantly increased the production of the cytokine TNF-α and IL-6, and the immunoglobulins IgA, IgM, and IgG. The immunoenhancing effects of CbTP were attributed to its TLR2-binding activity, promoting the formation of the TLR2 cluster, the activation of the TLR2 receptor, and thus activation of the downstream MyD88-NF-кB signaling pathway.


Assuntos
Peptídeos/metabolismo , Linfócitos T/imunologia , Timopentina/metabolismo , Receptor 2 Toll-Like/agonistas , Animais , Células Cultivadas , Ciclofosfamida , Citocinas , Feminino , Humanos , Imunidade , Imunidade Humoral , Hospedeiro Imunocomprometido , Imunomodulação , Camundongos , Camundongos Endogâmicos BALB C , Modelos Animais , Peptídeos/imunologia , Células RAW 264.7 , Timopentina/imunologia
4.
Int J Mol Sci ; 22(4)2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33669854

RESUMO

Changes that occur within oviducts after fertilization are dependent on post-ovulation events, including oocyte-oviduct interactions. Although general processes are well-defined, the molecular basis are poorly understood. Recently, new marker genes involved in 'cell development', 'cell growth', 'cell differentiation' and 'cell maturation' processes have been identified in porcine oocytes. The aim of the study was to assess the expression profile of genes in primary in vitro cultured oviductal epithelial cells (OECs), clustered in Gene Ontology groups which enveloped markers also identified in porcine oocytes. OECs (from 45 gilts) were surgically removed and cultured in vitro for ≤ 30 days, and then subjected to molecular analyses. The transcriptomic and proteomic profiles of cells cultured during 7, 15 and 30 days were investigated. Additionally, morphological/histochemical analyzes were performed. The results of genes expression profiles were validated after using RT-qPCR. The results showed a significant upregulation of UNC45B, NOX4, VLDLR, ITGB3, FMOD, SGCE, COL1A2, LOX, LIPG, THY1 and downregulation of SERPINB2, CD274, TXNIP, CELA1, DDX60, CRABP2, SLC5A1, IDO1, ANPEP, FST. Detailed knowledge of the molecular pathways occurring in the OECs and the gametes that contact them may contribute both to developments of basic science of physiology, and new possibilities in advanced biotechnology of assisted reproduction.


Assuntos
Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Oócitos/metabolismo , Oviductos/citologia , Animais , Diferenciação Celular/genética , Forma Celular/genética , Células Cultivadas , Regulação para Baixo/genética , Feminino , Ontologia Genética , Redes Reguladoras de Genes , Marcadores Genéticos , Transdução de Sinais/genética , Suínos , Transcriptoma , Regulação para Cima/genética
5.
Nutrients ; 13(1)2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33466241

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic is a global health challenge with substantial adverse effects on the world economy. It is beyond any doubt that it is, again, a call-to-action to minimize the risk of future zoonoses caused by emerging human pathogens. The primary response to contain zoonotic diseases is to call for more strict regulations on wildlife trade and hunting. This is because the origins of coronaviruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), SARS-CoV, Middle East respiratory syndrome coronavirus (MERS-CoV), as well as other viral pathogens (e.g., Ebola, HIV) are traceable to wild animals. Although COVID-19 is not related to livestock animals, the pandemic increased general attention given to zoonotic viral infections-the risk of which can also be associated with livestock. Therefore, this paper discusses the potential transformation of industrial livestock farming and the production of animal products, particularly meat, to decrease the risks for transmission of novel human pathogens. Plant-based diets have a number of advantages, but it is unrealistic to consider them as the only solution offered to the problem. Therefore, a search for alternative protein sources in insect-based foods and cultured meat, important technologies enabling safer meat production. Although both of these strategies offer a number of potential advantages, they are also subject to the number of challenges that are discussed in this paper. Importantly, insect-based foods and cultured meat can provide additional benefits in the context of ecological footprint, an aspect important in light of predicted climate changes. Furthermore, cultured meat can be regarded as ethically superior and supports better food security. There is a need to further support the implementation and expansion of all three approaches discussed in this paper, plant-based diets, insect-based foods, and cultured meat, to decrease the epidemiological risks and ensure a sustainable future. Furthermore, cultured meat also offers a number of additional benefits in the context of environmental impact, ethical issues, and food security.


Assuntos
COVID-19/epidemiologia , Proteínas Alimentares/provisão & distribuição , Abastecimento de Alimentos/métodos , Animais , COVID-19/etiologia , COVID-19/prevenção & controle , Insetos Comestíveis , Alimentos , Humanos , Carne , Plantas Comestíveis , Zoonoses/etiologia , Zoonoses/prevenção & controle
6.
FASEB J ; 34(12): 16049-16072, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33058296

RESUMO

Intestinal inflammatory disorders, such as inflammatory bowel disease, are major contributors to mortality and morbidity in humans and animals worldwide. While some native peptides have great potential as therapeutic agents against intestinal inflammation, potential cytotoxicity, anti-inciting action, and suppression of anti-inflammatory activity may limit their development as anti-inflammatory agents. Peptide hybridization is an effective approach for the design and engineering of novel functional peptides because hybrid peptides combine the advantages and benefits of various native peptides. In the present study, a novel hybrid anti-inflammatory peptide that combines the active center of Cecropin A (C) and the core functional region of LL-37 (L) was designed [C-L peptide; C (1-8)-L (17-30)] through in silico analysis to reduce cytotoxicity and improve the anti-inflammatory activity of the parental peptides. The resulting C-L peptide exhibited lower cytotoxicity than either C or L peptides alone. C-L also exerted a protective effect against lipopolysaccharide (LPS)-induced inflammatory responses in RAW264.7 macrophages and in the intestines of a mouse model. The hybrid peptide exhibited increased anti-inflammatory activity compared to the parental peptides. C-L plays a role in protecting intestinal tissue from damage, LPS-induced weight loss, and leukocyte infiltration. In addition, C-L reduces the expression levels of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), IL-1ß, and interferon-gamma (IFN-γ), as well as reduces cell apoptosis. It also reduced mucosal barrier damage caused by LPS. The anti-inflammatory effects of the hybrid peptide were mainly attributed to its LPS-neutralizing activity and antagonizing the activation of LPS-induced Toll-like receptor 4-myeloid differentiation factor 2 (TLR4/MD2). The peptide also affected the TLR4-(nuclear factor κB) signaling pathway, modulating the inflammatory response upon LPS stimulation. Collectively, these findings suggest that the newly designed peptide, C-L, could be developed into a novel anti-inflammatory agent for animals or humans.


Assuntos
Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico , Mucosa Intestinal/efeitos dos fármacos , Peptídeos/farmacologia , Animais , Peptídeos Catiônicos Antimicrobianos/farmacologia , Linhagem Celular , Inflamação/induzido quimicamente , Inflamação/metabolismo , Interleucina-6/metabolismo , Mucosa Intestinal/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mucosa/efeitos dos fármacos , Mucosa/metabolismo , NF-kappa B/metabolismo , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
7.
Animals (Basel) ; 10(8)2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32751789

RESUMO

Adult myogenesis is dependent on a population of precursor cells, located between the sarcolemma and the basal lamina of the muscle fiber. These satellite cells, usually present in a quiescent state, become activated in response to mechanical muscle strain, differentiating and fusing to add new nuclei to enlarging muscles. As their myogenic lineage commitment is induced on demand, muscle satellite cells exhibit a certain amount of plasticity, possibly being able to be directed to differentiate into non-myogenic fates. In this study, myosatellite cells were isolated from chicken muscle samples, characterized in vitro and introduced into developing blastoderms. They were further investigated using fluorescence microscopy, immunohistochemistry and PCR, to determine their location in embryos after three and eighteen days. The results of the in vitro analysis confirmed that the cells obtained from the Pectoralis thoracicus are highly myogenic, based on the expression of Pax7, Myogenin, MyoD, Desmin and the myotube assay. Furthermore, the investigation of satellite cells within the embryo showed their migration to the regions of Pectoralis thoracicus, heart, liver, gizzard, proventriculus, intestine and brain. Overall, the results of the study proved the high myogenicity of chicken Pectoralis thoracicus cell isolates, as well as provided new information about their migration pathways following introduction into the blastocyst. The presence of the introduced LacZ or eGFP transgenes across the embryo, even 20 days after myosatellite cell injection, further supports the notion that satellite cells exhibit significant plasticity, potentially transdifferentiating into non-muscle lineages.

8.
Genes (Basel) ; 11(8)2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32722004

RESUMO

Ammonia is very toxic to the body and has detrimental effects on many different organ systems. Using cultured myoblast cells, we examined ammonia's effect on myostatin expression, a negative regulator of skeletal muscle growth, and myotube diameters. The objective of this study was to examine how murine, avian, and fish cells respond to increasing levels of ammonia up to 50 mM. The murine myoblast cell line (C2C12), primary chick, and primary tilapia myoblast cells were cultured and then exposed to 10, 25, and 50 mM ammonium acetate, sodium acetate, and an untreated control for 24 h. High levels of ammonia were detrimental to the C2C12 cells, causing increased Myostatin (MSTN) expression and decreased myotube diameters between 10 and 25 mM (p < 0.002). Ammonia at 10 mM continued the positive myogenic response in the chick, with lower MSTN expression than the C2C12 cells and larger myotube diameters, but the myotube diameter at 50 mM ammonium acetate was significantly smaller than those at 10 and 25 mM (p < 0.001). However, chick myotubes at 50 mM were still significantly larger than the sodium acetate-treated and untreated control (p < 0.001). The tilapia cells showed no significant difference in MSTN expression or myotube diameter in response to increasing the concentrations of ammonia. Overall, these results confirm that increasing concentrations of ammonia are detrimental to mammalian skeletal muscle, while chick cells responded positively at lower levels but began to exhibit a negative response at higher levels, as the tilapia experienced no detrimental effects. The differences in ammonia metabolism strategies between fish, avian, and mammalian species could potentially contribute to the differences between species in response to high levels of ammonia. Understanding how ammonia affects skeletal muscle is important for the treatment of muscle wasting observed in liver failure patients.


Assuntos
Amônia/farmacologia , Diferenciação Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Desenvolvimento Muscular , Músculo Esquelético/metabolismo , Miostatina/metabolismo , Animais , Aves , Peixes , Humanos , Camundongos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Miostatina/genética
9.
Int J Mol Sci ; 21(13)2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32629824

RESUMO

Typically, mammalian and avian models have been used to examine the effects of ammonia on skeletal muscle. Hyperammonemia causes sarcopenia or muscle wasting, in mammals and has been linked to sarcopenia in liver disease patients. Avian models of skeletal muscle have responded positively to hyperammonemia, differing from the mammalian response. Fish skeletal muscle has not been examined as extensively as mammalian and avian muscle. Fish skeletal muscle shares similarities with avian and mammalian muscle but has notable differences in growth, fiber distribution, and response to the environment. The wide array of body sizes and locomotion needs of fish also leads to greater diversity in muscle fiber distribution and growth between different fish species. The response of fish muscle to high levels of ammonia is important for aquaculture and quality food production but has not been extensively studied to date. Understanding the differences between fish, mammalian and avian species' myogenic response to hyperammonemia could lead to new therapies for muscle wasting due to a greater understanding of the mechanisms behind skeletal muscle regulation and how ammonia effects these mechanisms. This paper provides an overview of fish skeletal muscle and ammonia excretion and toxicity in fish, as well as a comparison to avian and mammalian species.


Assuntos
Amônia/toxicidade , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Amônia/farmacologia , Animais , Aves , Peixes , Hiperamonemia/etiologia , Cirrose Hepática/etiologia , Mamíferos , Desenvolvimento Muscular/efeitos dos fármacos , Desenvolvimento Muscular/fisiologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Atrofia Muscular/metabolismo , Atrofia Muscular/fisiopatologia , Sarcopenia/etiologia
10.
J Clin Med ; 9(6)2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32604796

RESUMO

Granulosa cells (GCs) have many functions and are fundamental for both folliculogenesis and oogenesis, releasing hormones and communicating directly with the oocyte. Long-term in vitro cultures of GCs show significant stem-like characteristics. In the current study, RNA of human ovarian granulosa cells was collected at 1, 7, 15 and 30 days of long-term in vitro culture. Understanding the process of differentiation of GCs towards different cell lineages, as well as the molecular pathways underlying these mechanisms, is fundamental to revealing other possible stemness markers of this type of cell. Identifying new markers of GC plasticity may help to understand the aetiology and recurrence of a wide variety of diseases and health conditions and reveal possible clinical applications of the ovarian tissue cells, affecting not only the reproductive ability but also sex hormone production. Granulosa cells were the subject of this study, as they are readily available as remnant material leftover after in vitro fertilisation procedures and exhibit significant stem-like characteristics in culture. The change in gene expression was investigated through a range of molecular and bioinformatic analyses. Expression microarrays were used, allowing the identification of groups of genes typical of specific cellular pathways. This candidate gene study focused on ontological groups associated with muscle cell morphogenesis, structure, development and differentiation, namely, "muscle cell development", "muscle cell differentiation", "muscle contraction", "muscle organ development", "muscle organ morphogenesis", "muscle structure development", "muscle system process" and "muscle tissue development". The results showed that the 10 most upregulated genes were keratin 19, oxytocin receptor, connective tissue growth factor, nexilin, myosin light chain kinase, cysteine and glycine-rich protein 3, caveolin 1, actin, activating transcription factor 3 and tropomyosin, while the 10 most downregulated consisted of epiregulin, prostaglandin-endoperoxide synthase 2, transforming growth factor, interleukin, collagen, 5-hydroxytryptmine, interleukin 4, phosphodiesterase, wingless-type MMTV integration site family and SRY-box 9. Moreover, ultrastructural observations showing heterogeneity of granulosa cell population are presented in the study. At least two morphologically different subpopulations were identified: large, light coloured and small, darker cells. The expression of genes belonging to the mentioned ontological groups suggest the potential ability of GCs to differentiate and proliferate toward muscle lineage, showing possible application in muscle regeneration and the treatment of different diseases.

11.
Int J Mol Sci ; 20(16)2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31443263

RESUMO

Intestinal inflammation is an inflammatory disease resulting from immune dysregulation in the gut. It can increase the risk of enteric cancer, which is a common malignancy globally. As a new class of anti-inflammatory agents, native peptides have potential for use in the treatment of several intestinal inflammation conditions; however, their potential cytotoxicity and poor anti-inflammatory activity and stability have prevented their development. Hybridization has been proposed to overcome this problem. Thus, in this study, we designed a hybrid peptide (LL-37-TP5, LTP) by combing the active centre of LL-37 (13-36) with TP5. The half-life and cytotoxicity were tested in vitro, and the hybrid peptide showed a longer half-life and lower cytotoxicity than its parental peptides. We also detected the anti-inflammatory effects and mechanisms of LTP on Lipopolysaccharide (LPS)-induced intestinal inflammation in murine model. The results showed that LTP effectively prevented LPS-induced weight loss, impairment of intestinal tissues, leukocyte infiltration, and histological evidence of inflammation. Additionally, LTP decreased the levels of tumour necrosis factor-alpha, interferon-gamma, and interleukin-6; increased the expression of zonula occludens-1 and occludin; and reduced permeability in the jejunum of LPS-treated mice. Notably, LTP appeared to be more potent than the parental peptides LL-37 and TP5. The anti-inflammatory effects of LTP may be associated with the neutralization of LPS, inhibition of oxidative stress, and inhibition of the NF-κB signalling pathway. The findings of this study suggest that LTP might be an effective therapeutic agent for treating intestinal inflammation.


Assuntos
Antioxidantes/uso terapêutico , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Mucosa Intestinal/metabolismo , Lipopolissacarídeos/toxicidade , Animais , Interleucina-6/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Camundongos , NF-kappa B/metabolismo , Ocludina/metabolismo , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Proteína da Zônula de Oclusão-1/metabolismo
12.
J Proteome Res ; 14(9): 3912-23, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26211554

RESUMO

Laser microdissection (LMD) was utilized for the separation of the yolk, follicular wall (granulosa and theca), and surrounding stromal cells of small white follicles (SWF) obtained from reproductively active domestic fowl. Herein, we provide an in situ proteomics-based approach to studying follicular development through the use of LMD and mass spectrometry. This study resulted in a total of 2889 proteins identified from the three specific isolated compartments. White yolk from the smallest avian follicles resulted in the identification of 1984 proteins, while isolated follicular wall and ovarian stroma yielded 2470 and 2456 proteins, respectively. GO annotations highlighted the functional differences between the compartments. Among the three compartments examined, the relative abundance of vitellogenins, steroidogenic enzymes, anti-Mullerian hormone, transcription factors, and proteins involved in retinoic acid receptors/retinoic acid synthesis, transcription factors, and cell surface receptors such as EGFR and their associated signaling pathways reflected known cellular function of the ovary. This study has provided a global proteome for SWF, white yolk, and ovarian stroma of the avian ovary that can be used as a baseline for future studies and verifies that the coupling of LMD with proteomic analysis can be used to evaluate proteins from small, physiologically functional compartments of complex tissue.


Assuntos
Proteínas Aviárias/análise , Microdissecção e Captura a Laser/métodos , Folículo Ovariano/química , Proteoma/análise , Proteômica/métodos , Animais , Proteínas Aviárias/química , Galinhas , Cromatografia Líquida , Feminino , Proteoma/química , Espectrometria de Massas em Tandem
13.
Anal Bioanal Chem ; 407(22): 6851-63, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26159569

RESUMO

Ovarian cancer (OVC) remains the most lethal gynecological malignancy in the world due to the combined lack of early-stage diagnostics and effective therapeutic strategies. The development and application of advanced proteomics technology and new experimental models has created unique opportunities for translational studies. In this study, we investigated the ovarian cancer proteome of the chicken, an emerging experimental model of OVC that develops ovarian tumors spontaneously. Matched plasma, ovary, and oviduct tissue biospecimens derived from healthy, early-stage OVC, and late-stage OVC birds were quantitatively characterized by label-free proteomics. Over 2600 proteins were identified in this study, 348 of which were differentially expressed by more than twofold (p ≤ 0.05) in early- and late-stage ovarian tumor tissue specimens relative to healthy ovarian tissues. Several of the 348 proteins are known to be differentially regulated in human cancers including B2M, CLDN3, EPCAM, PIGR, S100A6, S100A9, S100A11, and TPD52. Of particular interest was ovostatin 2 (OVOS2), a novel 165-kDa protease inhibitor found to be strongly upregulated in chicken ovarian tumors (p = 0.0005) and matched plasma (p = 0.003). Indeed, RT-quantitative PCR and Western blot analysis demonstrated that OVOS2 mRNA and protein were also upregulated in multiple human OVC cell lines compared to normal ovarian epithelia (NOE) cells and immunohistochemical staining confirmed overexpression of OVOS2 in primary human ovarian cancers relative to non-cancerous tissues. Collectively, these data provide the first evidence for involvement of OVOS2 in the pathogenesis of both chicken and human ovarian cancer.


Assuntos
Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Proteínas de Neoplasias/metabolismo , Neoplasias Ovarianas/metabolismo , Proteoma/química , Proteoma/metabolismo , Sequência de Aminoácidos , Animais , Galinhas , Sequência Conservada , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Dados de Sequência Molecular , Especificidade da Espécie
14.
Stem Cells Dev ; 23(15): 1755-64, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24720794

RESUMO

Germ cells (GCs) are critically important as the vehicle that passes genetic information from one generation to the next. Correct development of these cells is essential and perturbation in their development often leads to reproductive failure and disease. Despite the importance of GCs, little is known about the mechanisms underlying the acquisition and maintenance of the GC character. Using a reprogramming strategy, we demonstrate that overexpression of ectopic transcription factors in embryonic fibroblasts can lead to the generation of chicken induced primordial germ cells (ciPGCs). These ciPGCs express pluripotent markers POU5F1, SSEA1, and the GC defining proteins, CVH and DAZL, closely resembling in vivo sourced PGCs instead of embryonic stem cells. Moreover, CXCR4 expressing ciPGCs were capable of migrating to the embryonic gonad after injection into the vasculature of stage 15 embryos, indicating the acquisition of a GC fate in these cells. Direct availability of ciPGCs in vitro would facilitate the study of GC development as well as provide a potential strategy for the conservation of important genetics of agricultural and endangered birds using somatic cells.


Assuntos
Linhagem da Célula , Fibroblastos/citologia , Células Germinativas/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Animais , Biomarcadores/metabolismo , Diferenciação Celular , Movimento Celular , Reprogramação Celular , Embrião de Galinha , Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas/metabolismo , Camadas Germinativas/citologia , Camadas Germinativas/metabolismo , Gônadas/citologia , Gônadas/embriologia , Células-Tronco Pluripotentes Induzidas/metabolismo
15.
Avian Dis ; 58(1): 95-101, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24758120

RESUMO

There is a paucity of preclinical models that simulate the development of ovarian tumors in humans. At present, the egg-laying hen appears to be the most promising model to study the spontaneous occurrence of ovarian tumors in the clinical setting. Although gross classification and histologic grade of tumors have been used prognostically in women with ovarian tumors, there is currently no single system that is universally used to classify reproductive tumors in the hen. Four hundred and one 192-wk-old egg-laying hens were necropsied to determine the incidence of reproductive tumors using both gross pathology and histologic classification. Gross pathologic classifications were designated as follows: birds presenting with ovarian tumors only (class 1), those presenting with oviductal and ovarian tumors (class 2), those with ovarian and oviductal tumors that metastasized to the gastrointestinal tract (class 3), those with ovarian and oviductal tumors that metastasized to the gastrointestinal tract and other distant organs (class 4), those with oviductal tumors only (class 5), those with oviductal tumors that metastasized to other organs with no ovarian involvement (class 6), and those with ovarian tumors that metastasized to other organs with no oviductal involvement (class 7), including birds with gastrointestinal tumors and no reproductive involvement (GI only) and those with no tumors (normal). Histopathologic classifications range from grades 1 to 3 and are based on mitotic developments and cellular differentiation. An updated gross pathology and histologic classification systems for the hen reproductive malignancies provides a method to report the range of reproductive tumors revealed in a flock of aged laying hens.


Assuntos
Galinhas , Células Epiteliais/patologia , Neoplasias Gastrointestinais/veterinária , Doenças dos Genitais Femininos/veterinária , Neoplasias Ovarianas/veterinária , Oviductos/patologia , Doenças das Aves Domésticas/patologia , Animais , Feminino , Neoplasias Gastrointestinais/classificação , Neoplasias Gastrointestinais/epidemiologia , Neoplasias Gastrointestinais/patologia , Doenças dos Genitais Femininos/classificação , Doenças dos Genitais Femininos/epidemiologia , Doenças dos Genitais Femininos/patologia , Incidência , Neoplasias Ovarianas/classificação , Neoplasias Ovarianas/epidemiologia , Neoplasias Ovarianas/patologia , Doenças das Aves Domésticas/classificação , Doenças das Aves Domésticas/epidemiologia
16.
Cancer Prev Res (Phila) ; 6(12): 1283-92, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24136864

RESUMO

Epidemiologic, laboratory, and animal evidence suggests that progestins and vitamin D may be potent ovarian cancer preventives. Our objectives were to evaluate progestins as reproductive tract cancer chemopreventives in the chicken, determine whether restricted ovulation affected the incidence of reproductive tract tumors, and assess whether vitamin D would confer cancer protection either alone or in addition to progestin. A total of 2,400 two-year-old Single Comb White Leghorns were randomized into six groups (400 each) with hormonal and dietary manipulation for 2 years as follows: (i) no intervention, regular feed/caloric intake, (ii) control, (iii) vitamin D, (iv) the progestin levonorgestrel, (v) vitamin D plus levonorgestrel, and (vi) the progestin Provera (medroxyprogesterone acetate). Groups 2 to 6 were caloric restricted to inhibit ovulation. Our results indicated that caloric restriction decreased egg production by more than 60%, and was associated with a greater than 70% decrease in reproductive tract cancers. Ovulatory events did not differ among the caloric-restricted groups (groups 2-6), except for the group receiving levonorgestrel, which had fewer ovulatory events than controls (P = 0.046). After correcting for egg production, birds receiving progestins had significantly fewer reproductive tract cancers [OR, 0.61; confidence interval (CI), 0.39-0.95; P = 0.03], with similar proportionate reductions in tumors arising in either the ovary or oviduct. Vitamin D did not significantly affect cancer incidence overall, or add to the cancer preventive effect of progestins. This study suggests a protective effect of progestins against ovarian and oviductal cancers. These data support the concept that progestins provide a chemopreventive effect unrelated to ovulation.


Assuntos
Adenocarcinoma/prevenção & controle , Neoplasias Ovarianas/prevenção & controle , Oviposição/efeitos dos fármacos , Ovulação/efeitos dos fármacos , Progestinas/uso terapêutico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica , Galinhas , Suplementos Nutricionais , Ovos , Feminino , Vitamina D/administração & dosagem
17.
Methods ; 61(3): 323-30, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23603217

RESUMO

A novel form of ovomacroglobulin/ovostatin (OVOS2) predicted from EST data was previously identified in the chicken ovarian cancer model using a mass spectrometry-based shotgun label-free proteomics strategy. The quantitative label-free data from plasma showed a significant increase over time with the spontaneous onset and progression of ovarian cancer making it a potential protein biomarker for further study. Two other proteins of interest identified from this initial study included vitellogenin-1 (Vit-1), a lipid-transport protein tied to egg production, and transthyretin (TTR), a retinol binding transport protein currently used in the clinical management of ovarian cancer. A multiplexed protein cleavage isotope dilution mass spectrometry (PC-IDMS) assay was developed to quantify OVOS2, Vit-1, and TTR by selected reaction monitoring (SRM). A total of 6 stable isotope labeled (SIL) peptide standards were used in the assay with three tryptic peptides from OVOS2, one for Vit-1, and two for TTR. The assay was developed for use with un-depleted raw plasma combined with the filter assisted sample preparation (FASP) method and its use was also demonstrated for matched ovary tissue samples. The PC-IDMS data for the two TTR peptides did not correlate with each other with more than a 10-fold difference in concentration for all 5 time points measured. The PC-IDMS data from the longitudinal plasma samples correlated well for OVOS2 and Vit-1 whereas TTR was inconclusive. Interestingly, the absolute amount for one of the OVOS2 SIL peptides was 2-fold less compared with the other two SIL peptides. These data illustrate the successes and challenges of qualifying quantitative levels of proteins from an in-gel digestion sample preparation followed by LC-MS/MS (GeLC) label-free discovery-based approach to a targeted SRM-based quantitative assay in plasma and tissues.


Assuntos
Bioensaio , Biomarcadores Tumorais/análise , Neoplasias Ovarianas/química , Fragmentos de Peptídeos/análise , Pré-Albumina/análise , Vitelogeninas/análise , alfa-Macroglobulinas/análise , Sequência de Aminoácidos , Animais , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/química , Calibragem , Isótopos de Carbono , Galinhas , Modelos Animais de Doenças , Feminino , Humanos , Técnicas de Diluição do Indicador , Marcação por Isótopo , Dados de Sequência Molecular , Isótopos de Nitrogênio , Neoplasias Ovarianas/metabolismo , Pré-Albumina/química , Pré-Albumina/metabolismo , Proteômica/métodos , Proteômica/normas , Espectrometria de Massas em Tandem/métodos , Espectrometria de Massas em Tandem/normas , Vitelogeninas/sangue , Vitelogeninas/química , alfa-Macroglobulinas/química , alfa-Macroglobulinas/metabolismo
18.
Int J Mass Spectrom ; 305(2-3): 79-86, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21845070

RESUMO

Spontaneous epithelial ovarian cancer (EOC) in the chicken presents a similar pathogenesis compared with humans including CA-125 expression and genetic mutational frequencies (e.g., p53). The high prevalence of spontaneous EOC chickens also provides a unique experimental model for biomarker discovery at the genomic, proteomic, glycomic, and metabolomic level. In an effort to exploit this unique model for biomarker discovery, longitudinal plasma samples were collected from chickens at three month intervals for one year. The study described herein involved cleaving the N-glycans from these longitudinal chicken plasma samples and analyzing them via nanoLC-FTMS/MS. Glycans identified in this study were previously found in human plasma and this work provides a promising methodology to enable longitudinal studies of the N-linked plasma glycome profile during EOC progression. The structure, abundance, and intra-variability and inter-variability for 35 N-linked glycans identified in this study are reported. The full potential of the chicken model for biomarker discovery has yet to be realized, but the initial interrogation of longitudinally-procured samples provides evidence that supports the value of this strategy in the search for glycomic biomarkers.

19.
Cancer Prev Res (Phila) ; 4(4): 562-7, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21325563

RESUMO

Epithelial ovarian cancer (OVAC) remains a highly lethal malignancy. It is a leading cause of cancer deaths among women in the United States causing more deaths than all other gynecologic malignancies combined. The pathogenesis of OVAC is not completely understood, but the process of repeated ovulation is believed to lead to genetic damage in the ovarian epithelium. As part of a prospective trial designed to evaluate OVAC chemopreventive strategies using the chicken model, caloric restriction (55% less energy) was used to inhibit ovulation in groups of hens receiving chemopreventives, thereby minimizing the impact of ovulation on the incidence of reproductive tract cancer. A separate group of chickens was maintained concurrently in the same environment, and managed similarly, except that caloric intake was not restricted. Among birds not receiving chemopreventive agents, we compared caloric versus noncaloric restricted birds to determine the relations between calorie restriction and risk of developing adenocarcinoma of the reproductive tract. Mortality in the calorie-restricted group was almost half that of those on full feed. Calorie-restricted chickens maintained body weights averaging 1.423 kg compared with the full-fed birds at 1.892 kg. Ovulation rate varied with the full-fed group producing 64% more eggs than the calorie-restricted group. Total reproductive cancers occurred in 57 (33.3%) birds for the full-fed group and 26 (10.3%) birds for the calorie-restricted group. On the basis of histopathology, 45 (26.3%) birds in the full-fed group had ovarian adenocarcinoma compared with 16 (6.3%) birds in the calorie-restricted group. Calorie restriction in laying hens resulted in a near five-fold reduction in OVAC.


Assuntos
Adenocarcinoma/prevenção & controle , Restrição Calórica , Neoplasias Epiteliais e Glandulares/prevenção & controle , Neoplasias Ovarianas/prevenção & controle , Ovulação/fisiologia , Animais , Galinhas , Feminino , Neoplasias Epiteliais e Glandulares/dietoterapia , Neoplasias Ovarianas/dietoterapia , Oviductos/patologia
20.
Gynecol Oncol ; 120(2): 256-64, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21093898

RESUMO

OBJECTIVES: A putative model of spontaneous cancer has been described in the laying hen that bears significant similarities to human ovarian cancer. Our objective was to characterize and compare the patterns of gene expression in chicken and human forms of this disease. METHODS: RNA from 20 localized and metastatic ovarian and oviductal chicken tumor samples was isolated, amplified using in vitro transcription, and hybridized against normal ovarian epithelium to a customized cDNA microarray constructed for these studies. Differentially expressed genes were identified for localized ovarian, metastatic ovarian, and oviductal (or tubal) cancer by class comparison using BRB-ArrayTools. Results were validated with semi-quantitative PCR. A gene list (prediction model) constructed with the class prediction tool was used in a human ovarian cancer microarray obtained from the GEO datasets (GSE6008) in order to compare these results across species. RESULTS: Class comparison analysis between localized ovarian, metastatic ovarian and oviductal cancer yielded 41 different informative probes that coded for 27 unique genes. Localized ovarian samples clustered between metastatic ovarian and oviductal cancer samples. Using our chicken data as a training set and leaving oviductal samples out of the analysis, we created a prediction model that classified early stage and advanced stage human ovarian cancer gene expression arrays with 78% overall accuracy. CONCLUSIONS: Gene expression of spontaneous ovarian cancer in the chicken is comparable to gene expression patterns of human ovarian cancer.


Assuntos
Adenocarcinoma/genética , Adenocarcinoma/veterinária , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/veterinária , Doenças das Aves Domésticas/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Animais , Galinhas , Feminino , Perfilação da Expressão Gênica , Humanos , Análise em Microsséries , Análise de Sequência com Séries de Oligonucleotídeos , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Oviductos/patologia , Reação em Cadeia da Polimerase , Doenças das Aves Domésticas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...