Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Psychol ; 14: 1086326, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36910820

RESUMO

Recent studies have demonstrated that organizations often fail to execute organizational changes effectively due to a lack of their employees' organizational change readiness (OCR). However, the absence of employees' OCR is rooted in whether their values align with their organizations. The research aims to clarify when and why employees' perceived values-congruence with their organizations, supervisors, and workgroups (PVC-O, PVC-S, and PVC-G) helps stimulate their organizational change readiness (OCR). Specifically, it Integrates the self-categorization theory and social information processing theory and proposes a moderated mediation model to investigate the roles of perceived insider status (PIS) and the quality of change communication (QCC). This study gathered a valid sample of 252 employees from six Chinese companies at three different time points, and performed the structural equation modeling and multiple regression to test the proposed research model. The results demonstrate that PVC-O, PVC-S, and PVC-G are all positively related to employees' PIS, which further promotes their readiness for organizational change. Additionally, QCC strengthens not only the positive effect of employees' PVC-O and PVC-G (except for PVC-S) on PIS but also the indirect effects of PIS. This study offers valuable implications for practitioners implementing their organizational change practices in China. Moreover, this study can contribute to the organizational change literature by uncovering the underlying mechanism between perceived values-congruence and employees' OCR in the light of the person-environment interaction.

2.
Opt Express ; 29(15): 23461-23476, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34614611

RESUMO

Accurate identification of aerosols and cloud from remote sensing observations is of importance for quantitatively evaluating their radiative forcing and related impacts. Even though polarization lidar has exhibited a unique advantage of classifying atmospheric aerosols and clouds over the past several decades, polarization measurements are often achieved at one wavelength (UV or VIS) using laser remote sensing. To better identify the types of aerosols and clouds, we developed a ground-based dual-polarization lidar system that can simultaneously detect polarization measurements at wavelengths of 355 nm and 532 nm. Our results show that the volume depolarization ratios (VDRs) at 355 nm and 532 nm markedly differ for typical types of aerosols and clouds in the atmosphere. For non-spherical particles, the ratio of VDRs at 532 nm and 355 nm are 2.87 ± 1.35 for ice cloud and 1.51 ± 0.29 for dust-dominated aerosols, respectively. However, for spherical particles, the ratios are 0.43 ± 0.26 for water cloud and 0.56 ± 0.05 for air pollutants. Consequently, we proposed a simple reliable method for classifying atmospheric aerosols and clouds from polarization measurements observed by the developed lidar system. The proposed method first distinguishes clouds from aerosols using a combination of the color ratio (CR, 532 nm/355 nm) and attenuated backscattering coefficients (ABC) at 532 nm. Then, subtypes of clouds and aerosols are identified based on the ratio of VDRs at 532 nm and 355 nm. The results showed that dual-polarization lidar measurements can remarkably improve the classification of atmospheric aerosols and clouds, compared with results using a traditional method. This study illustrates that more information on atmospheric aerosols and clouds can be obtained from polarization measurements at multiple wavelengths by active remote sensing.

3.
Opt Express ; 28(5): 7028-7035, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32225938

RESUMO

Polarization lidar has been widely used in recent decades to observe the vertical structures of aerosols and clouds in the atmosphere. We developed a dual-polarization lidar system that can detect polarization measurements simultaneously at 355 nm and 532 nm. Dust events and haze episodes over northern China in 2014 were observed by the developed lidar. The results showed that the dust-dominated aerosol depolarization ratios at 532 nm were larger than those at 355 nm, but those of the air pollutants were smaller, indicating that this tool could provide a more accurate classification of aerosols. Moreover, we found a good relationship between the absorption coefficient of aerosols and the ratio of depolarization ratios at 532 nm and 355 nm for dust aerosols. Our results imply that aerosol absorption from polarization measurements may be determined by lidar at the ultraviolet and visible wavelengths.

4.
Sci Total Environ ; 721: 137699, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32179344

RESUMO

Passive remote sensing has been widely used in recent decades to obtain global particulate matter (PM) mass concentration at daytime and under cloud-free condition. In this study, a retrieval method was developed for providing PM (PM10 and PM2.5) mass concentration both at daytime and nighttime using the latest data version (V4.10) from space-borne Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) lidar measurements. The advantage of the method is that PM10 & PM2.5 mass concentrations were obtained for seven aerosol types respectively base on active remote sensing observation at daytime and nighttime, even under cloudy condition. The results show that satellite-based PM mass concentrations are in good agreement with in-situ observations from 1602 ground monitoring sites throughout the world. Moreover, global distributions of PM10 and PM2.5 mass concentration during 2007-2016 were investigated, showing that for Beijing the annual mean PM2.5 mass concentration at nighttime is 11.31% less than those at daytime, however for London is 36.62%. It is suggested that diurnal variations in PM2.5 mass concentration are closely related to human activities. This work provides a reliable high-resolution database for long-term particulate mass concentrations on the global scale, which is of importance to evaluate aerosol impacts on climate, environment as well as ecosystem.

5.
Nanotechnology ; 30(2): 024001, 2019 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-30378565

RESUMO

The use of sulfur as a cathode material for lithium-sulfur (Li-S) batteries has attracted significant attention due to its high theoretical specific capacity (1675 mA h g-1); however, practicality is hindered by a number of obstacles, including the shuttling effect of polysulfides and the low electrical conductivity of sulfur. Herein, ball milling sulfur with unzipped multiwalled carbon nanotubes (UMWNTs) was found to covalently immobilize sulfur nanoparticles to the UMWNTs and resulted in composites (designated as S@UMWNTs) with high electrical conductivity. The unzipping degree of MWNTs was first controlled to optimize the immobilization of sulfur nanoparticles to UMWNTs and the electrochemical performance of the resulting Li-S batteries. The presence of C-S covalent bonds between the UMWNTs and sulfur nanoparticles was verified using x-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy, and the formation of C-S bonds was ascribed to the reactions between the mechanically-induced sulfur radicals and the functional groups of UMWNTs. As a result, when used as a cathode material for Li-S batteries, the S@UMWNTs exhibited excellent electrochemical performance, including a good long-term cycling stability and low capacity decay (e.g., ca. 0.09% per cycle over 500 charge/discharge cycles at 1 C) due to the suppression of the shuttling effect by the C-S covalent bonds.

6.
Angew Chem Int Ed Engl ; 56(45): 14090-14095, 2017 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-28895265

RESUMO

Zeolites with molecular dimension pores are widely used in petrochemical and fine-chemical industries. While traditional solvothermal syntheses suffer from environmental, safety, and efficiency issues, the newly developed solvent-free synthesis is limited by zeolite crystal aggregation. Herein, we report well-dispersed and faceted silicalite ZSM-5 zeolite crystals obtained using a solvent-free synthesis facilitated by graphene oxide (GO). The selective interactions between the GO sheets and different facets, which are confirmed by molecular dynamics simulations, result in oriented growth of the ZSM-5 crystals along the c-axis. More importantly, the incorporation of GO sheets into the ZSM-5 crystals leads to the formation of mesopores. Consequently, the faceted ZSM-5 crystals exhibit hierarchical pore structures. This synthetic method is superior to conventional approaches because of the features of the ZSM-5 zeolite.

7.
Nanotechnology ; 28(39): 395404, 2017 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-28726690

RESUMO

The morphology of electrode materials plays an important role in determining the performance of lithium-ion batteries (LIBs). However, studies on determining the most favorable morphology for high-performance LIBs have rarely been reported. In this study, a series of F-doped SnO x (F-SnO2 and F-SnO) materials with various morphologies was synthesized using ethylenediamine as a structure-directing agent in a facile hydrothermal process. During the hydrothermal process, the F-SnO x was embedded in situ into the three-dimensional (3D) architecture of reduced graphene oxide (RGO) to form F-SnO x @RGO composites. The morphologies and nanostructures of F-SnO x , i.e., F-SnO2 nanocrystals, F-SnO nanosheets, and F-SnO2 aggregated particles, were fully characterized using electron microscopy, x-ray diffraction, and x-ray photoelectron spectroscopy. Electrochemical characterization indicated that the F-SnO2 nanocrystals uniformly distributed in the 3D RGO architecture exhibited higher specific capacity, better rate performance, and longer cycling stability than the F-SnO x with other morphologies. These excellent electrochemical performances were attributed to the uniform distribution of the F-SnO2 nanocrystals, which significantly alleviated the volume changes of the electrode material and shortened the Li ion diffusion path during lithiation/delithiation processes. The F-SnO2@RGO composite composed of uniformly distributed F-SnO2 nanocrystals also exhibited excellent rate performance, as the specific capacities were measured to be 1158 and 648 mA h g-1 at current densities of 0.1 and 5 A g-1, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...