Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22270755

RESUMO

We identified the co-infection of the SARS-CoV-2 Omicron and Delta variants in two epidemiologically unrelated patients with chronic kidney disease requiring haemodialysis. Both SARS-CoV-2 variants were co-circulating locally at the time of detection. Amplicon- and probe-based sequencing using short- and long-read technologies identified and quantified Omicron and Delta subpopulations in respiratory samples from the two patients. These findings highlight the importance of genomic surveillance in vulnerable populations.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-472252

RESUMO

In late November 2021, the World Health Organization declared the SARS-CoV-2 lineage B.1.1.529 the fifth variant of concern, Omicron. This variant has acquired 15 mutations in the receptor binding domain of the spike protein, raising concerns that Omicron could evade naturally acquired and vaccine-derived immunity. We utilized an authentic virus, multicycle neutralisation assay to demonstrate that sera collected one, three and six months post-two doses of Pfizer-BioNTech BNT162b2 has a limited ability to neutralise SARS-CoV-2. However, four weeks after a third dose, neutralising antibody titres are boosted. Despite this increase, neutralising antibody titres are reduced four-fold for Omicron compared to lineage A.2.2 SARS-CoV-2.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21267628

RESUMO

Several Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) neutralising monoclonal antibodies (mAbs) have received emergency use authorisation by regulatory agencies for treatment and prevention of Coronavirus Disease 2019 (COVID-19), including in patients at risk for progression to severe disease. Here we report the persistence of viable SARS-CoV-2 in patients treated with sotrovimab and the rapid development of spike gene mutations that have been shown to confer high level resistance to sotrovimab in vitro. We highlight the need for SARS-CoV-2 genomic surveillance in at risk individuals to inform stewardship of mAbs use and prevent potential treatment failures.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21262296

RESUMO

Whole-genome sequencing of viral isolates is critical for informing transmission patterns and ongoing evolution of pathogens, especially during a pandemic. However, when genomes have low variability in the early stages of a pandemic, the impact of technical and/or sequencing errors increases. We quantitatively assessed inter-laboratory differences in consensus genome assemblies of 72 matched SARS-CoV-2-positive specimens sequenced at different laboratories in Sydney, Australia. Raw sequence data were assembled using two different bioinformatics pipelines in parallel, and resulting consensus genomes were compared to detect laboratory-specific differences. Matched genome sequences were predominantly concordant, with a median pairwise identity of 99.997%. Identified differences were predominantly driven by ambiguous site content. Ignoring these produced differences in only 2.3% (5/216) of pairwise comparisons, each differing by a single nucleotide. Matched samples were assigned the same Pango lineage in 98.2% (212/216) of pairwise comparisons, and were mostly assigned to the same phylogenetic clade. However, epidemiological inference based only on single nucleotide variant distances may lead to significant differences in the number of defined clusters if variant allele frequency thresholds for consensus genome generation differ between laboratories. These results underscore the need for a unified, best-practices approach to bioinformatics between laboratories working on a common outbreak problem.

5.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-442304

RESUMO

SARS-CoV-2 genomic surveillance has been vital in understanding the spread of COVID-19, the emergence of viral escape mutants and variants of concern. However, low viral loads in clinical specimens affect variant calling for phylogenetic analyses and detection of low frequency variants, important in uncovering infection transmission chains. We systematically evaluated three widely adopted SARS-CoV-2 whole genome sequencing methods for their sensitivity, specificity, and ability to reliably detect low frequency variants. Our analyses highlight that the ARTIC v3 protocol consistently displays high sensitivity for generating complete genomes at low viral loads compared with the probe-based Illumina respiratory viral oligo panel, and a pooled long-amplicon method. We show substantial variability in the number and location of low-frequency variants detected using the three methods, highlighting the importance of selecting appropriate methods to obtain high quality sequence data from low viral load samples for public health and genomic surveillance purposes.

6.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-048751

RESUMO

Community transmission of the new coronavirus SARS-CoV-2 is a major public health concern that remains difficult to assess. We present a genomic survey of SARS-CoV-2 from a during the first 10 weeks of COVID-19 activity in New South Wales, Australia. Transmission events were monitored prospectively during the critical period of implementation of national control measures. SARS-CoV-2 genomes were sequenced from 209 patients diagnosed with COVID-19 infection between January and March 2020. Only a quarter of cases appeared to be locally acquired and genomic-based estimates of local transmission rates were concordant with predictions from a computational agent-based model. This convergent assessment indicates that genome sequencing provides key information to inform public health action and has improved our understanding of the COVID-19 evolution from outbreak to epidemic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...