Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-509852

RESUMO

Memory B cells (MBCs) generate rapid antibody responses upon secondary encounter with a pathogen. Here, we investigated the kinetics, avidity and cross-reactivity of serum antibodies and MBCs in 155 SARS-CoV-2 infected and vaccinated individuals over a 16-month timeframe. SARS-CoV-2-specific MBCs and serum antibodies reached steady-state titers with comparable kinetics in infected and vaccinated individuals. Whereas MBCs of infected individuals targeted both pre- and postfusion Spike (S), most vaccine-elicited MBCs were specific for prefusion S, consistent with the use of prefusion-stabilized S in mRNA vaccines. Furthermore, a large fraction of MBCs recognizing postfusion S cross-reacted with human betacoronaviruses. The avidity of MBC-derived and serum antibodies increased over time resulting in enhanced resilience to viral escape by SARS-CoV-2 variants, including Omicron BA.1 and BA.2 sub-lineages, albeit only partially for BA.4 and BA.5 sublineages. Overall, the maturation of high-affinity and broadly-reactive MBCs provides the basis for effective recall responses to future SARS-CoV-2 variants.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-442808

RESUMO

The repeated spillovers of {beta}-coronaviruses in humans along with the rapid emergence of SARS-CoV-2 escape variants highlight the need to develop broad coronavirus therapeutics and vaccines. Five monoclonal antibodies (mAbs) were isolated from COVID-19 convalescent individuals and found to cross-react with multiple {beta}-coronavirus spike (S) glycoproteins by targeting the stem helix. One of these mAbs, S2P6, cross-reacts with more than twenty human and animal {beta}-coronavirus S glycoproteins and broadly neutralizes SARS-CoV-2 and pseudotyped viruses from the sarbecovirus, merbecovirus and embecovirus subgenera. Structural and functional studies delineate the molecular basis of S2P6 cross-reactivity and broad neutralization and indicate that this mAb blocks viral entry by inhibiting membrane fusion. S2P6 protects hamsters challenged with SARS-CoV-2 (including the B.1.351 variant of concern) through direct viral neutralization and Fc-mediated effector functions. Serological and B cell repertoire analyses indicate that antibodies targeting the stem helix are found in some convalescent donors and vaccinees but are predominantly of narrow specificity. Germline reversion of the identified cross-reactive mAbs revealed that their unmutated ancestors are specific for the endemic OC43 or HKU1 viruses and acquired enhanced affinity and breadth through somatic mutations. These data demonstrate that conserved epitopes in the coronavirus fusion machinery can be targeted by protective antibodies and provide a framework for structure-guided design of pan-{beta}-coronavirus vaccines eliciting broad protection.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-438709

RESUMO

An ideal anti-SARS-CoV-2 antibody would resist viral escape1-3, have activity against diverse SARS-related coronaviruses4-7, and be highly protective through viral neutralization8-11 and effector functions12,13. Understanding how these properties relate to each other and vary across epitopes would aid development of antibody therapeutics and guide vaccine design. Here, we comprehensively characterize escape, breadth, and potency across a panel of SARS-CoV-2 antibodies targeting the receptor-binding domain (RBD), including S3094, the parental antibody of the late-stage clinical antibody VIR-7831. We observe a tradeoff between SARS-CoV-2 in vitro neutralization potency and breadth of binding across SARS-related coronaviruses. Nevertheless, we identify several neutralizing antibodies with exceptional breadth and resistance to escape, including a new antibody (S2H97) that binds with high affinity to all SARS-related coronavirus clades via a unique RBD epitope centered on residue E516. S2H97 and other escape-resistant antibodies have high binding affinity and target functionally constrained RBD residues. We find that antibodies targeting the ACE2 receptor binding motif (RBM) typically have poor breadth and are readily escaped by mutations despite high neutralization potency, but we identify one potent RBM antibody (S2E12) with breadth across sarbecoviruses closely related to SARS-CoV-2 and with a high barrier to viral escape. These data highlight functional diversity among antibodies targeting the RBD and identify epitopes and features to prioritize for antibody and vaccine development against the current and potential future pandemics.

4.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-438818

RESUMO

The recent emergence of SARS-CoV-2 variants of concern (VOC) and the recurrent spillovers of coronaviruses in the human population highlight the need for broadly neutralizing antibodies that are not affected by the ongoing antigenic drift and that can prevent or treat future zoonotic infections. Here, we describe a human monoclonal antibody (mAb), designated S2x259, recognizing a highly conserved cryptic receptor-binding domain (RBD) epitope and cross-reacting with spikes from all sarbecovirus clades. S2x259 broadly neutralizes spike-mediated entry of SARS-CoV-2 including the B.1.1.7, B.1.351, P.1 and B.1.427/B.1.429 VOC, as well as a wide spectrum of human and zoonotic sarbecoviruses through inhibition of ACE2 binding to the RBD. Furthermore, deep-mutational scanning and in vitro escape selection experiments demonstrate that S2x259 possesses a remarkably high barrier to the emergence of resistance mutants. We show that prophylactic administration of S2x259 protects Syrian hamsters against challenges with the prototypic SARS-CoV-2 and the B.1.351 variant, suggesting this mAb is a promising candidate for the prevention and treatment of emergent VOC and zoonotic infections. Our data unveil a key antigenic site targeted by broadly-neutralizing antibodies and will guide the design of pan-sarbecovirus vaccines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...