Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22277513

RESUMO

BackgroundTo limit viral transmission, COVID-19 testing strategies must evolve as new SARS-CoV-2 variants (and new respiratory viruses) emerge to ensure that the specimen types and test analytical sensitivities being used will reliably detect individuals during the pre-infectious and infectious periods. Our accompanying work demonstrated that there are extreme differences in viral loads among paired saliva (SA), anterior-nares swab (ANS) and oropharyngeal swab (OPS) specimens collected from the same person and timepoint. We hypothesized that these extreme differences may prevent low-analytical-sensitivity assays (such as antigen rapid diagnostic tests, Ag-RDTs) performed on a single specimen type from reliably detecting pre-infectious and infectious individuals. MethodsWe conducted a longitudinal COVID-19 household-transmission study in which 228 participants collected SA, ANS, and OPS specimens for viral-load quantification by RT-qPCR, and performed an ANS Ag-RDT (Quidel QuickVue At-Home OTC COVID-19 Test) daily. We evaluated the performance of the Ag-RDT (n=2215 tests) to detect infected individuals (positive results in any specimen type by RT-qPCR) and individuals with presumed infectious viral loads (at or above thresholds of 104, 105, 106, or 107 copies/mL). ResultsOverall, the daily Ag-RDT detected 44% (358/811) timepoints from infected individuals. From 17 participants who enrolled early in the course of infection, we found that daily Ag-RDT performance was higher at timepoints when symptoms were reported, but symptoms only weakly correlated with SARS-CoV-2 viral loads, so ANS Ag-RDT clinical sensitivity remained below 50%. The three specimen types exhibited asynchronous presumably-infectious periods (regardless of the infectious viral-load threshold chosen) and the rise in ANS viral loads was delayed relative to SA or OPS for nearly all individuals, which resulted in the daily ANS Ag-RDT detecting only 3% in the pre-infectious period and 63% in the infectious period. We evaluated a computationally-contrived combined AN-OP swab based on viral loads from ANS and OPS specimens collected at the same timepoint; when tested with similar analytical sensitivity as the Ag-RDT, this combined swab was predicted to have significantly better performance, detecting up to 82% of infectious individuals. ConclusionDaily ANS rapid antigen testing missed virtually all pre-infectious individuals, and more than one third of presumed infectious individuals due to low-analytical-sensitivity of the assay, a delayed rise in ANS viral loads, and asynchronous infectious viral loads in SA or OPS. When high-analytical-sensitivity assays are not available and low-analytical-sensitivity tests such as Ag-RDTs must be used for SARS-CoV-2 detection, an AN-OP combination swab is predicted to be most effective for detection of pre-infectious and infectious individuals. More generally, low-analytical-sensitivity tests are likely to perform more robustly using oral-nasal combination specimen types to detect new SASR-CoV-2 variants and emergent upper respiratory viruses.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22277113

RESUMO

BackgroundScreening testing, often via self-collected specimens, remains a key strategy to detect infections early and prevent SARS-CoV-2 transmission, and to enable earlier initiation of treatment. However, which specimen type best detects the earliest days of infection remains controversial. Further, the analytical sensitivity of diagnostic tests must also be considered, as viral loads below a tests limit of detection (LOD) are likely to yield false-negative results. Comparisons of quantitative, longitudinal SARS-CoV-2 viral-load timecourses in multiple specimen types can determine the best specimen type and test analytical sensitivity for earliest detection of infection. MethodsWe conducted a COVID-19 household transmission study between November 2021 and February 2022 that enrolled 228 participants and analyzed 6,825 samples using RT-qPCR to quantify viral-load timecourses in three specimen types (saliva [SA], anterior-nares swab [ANS], and oropharyngeal swab [OPS]). From this study population, 14 participants enrolled before or at the incidence of infection with the Omicron variant. We compared the viral loads in specimens collected from each person at the same timepoint, and the longitudinal viral-load timecourses from each participant. Using these viral loads, we inferred the clinical sensitivity of each specimen type to detect infected, pre-infectious, and infectious individuals (based on presumably infectious viral-load levels) using assays with a range of analytical sensitivities. We also inferred the clinical sensitivity of computationally-contrived specimen types representing combinations of single specimen types. ResultsWe found extreme differences (up to 109 copies/mL) in viral loads between paired specimen types in the same person at the same timepoint, and that longitudinal viral-load timecourses across specimen types did not correlate. Because of this lack of correlation, infectious viral loads were often observed in different specimen types asynchronously throughout the course of the infection. In the first 4 days of infection, no single specimen type was inferred to achieve >95% detection of infected or infectious individuals, even with the highest analytical sensitivity assays. In nearly all participants (11/14), a rise in ANS viral loads was delayed (as many as 7 days) relative to SA and OPS. We also observed that ANS and OPS had the most complementary viral-load timecourses, resulting in optimal inferred performance with a computationally-contrived combined anterior-nares-oropharyngeal (AN-OP) swab specimen type. The combination AN-OP swab had superior inferred clinical sensitivity the first 8 days of infection with both high- and low-analytical-sensitivity assays. This AN-OP swab was also inferred to significantly improve detection of pre-infectious and infectious individuals over any single specimen type. ConclusionOur work demonstrates that the viral load in one specimen type cannot reliably predict the viral load in another specimen type. Combination specimen types may offer a more robust approach for earliest detection of new variants and respiratory viruses when viral kinetics are still unknown.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22271724

RESUMO

BackgroundThe analytical sensitivities of SARS-CoV-2 diagnostic tests span 6 orders of magnitude. Optimizing sample-collection methods to achieve the most reliable detection for a given sensitivity would increase the effectiveness of testing and minimize COVID-19 outbreaks. MethodsFrom September 2020 to April 2021 we performed a household-transmission study in which participants self-collected samples every morning and evening throughout acute SARS-CoV-2 infection. Seventy mildly symptomatic participants collected saliva and, of those, 29 also collected nasal-swab samples. Viral load was quantified in 1194 saliva and 661 nasal-swab samples using a high-analytical-sensitivity RT-qPCR assay (LOD, 1,000 SARS-CoV-2 RNA copies/mL). FindingsViral loads in both saliva and nasal-swab samples were significantly higher in morning-collected samples than evening-collected samples after symptom onset. We used these quantitative measurements to infer which diagnostic tests would have detected infection (based on sample type and test analytical sensitivity). We find that morning collection would have resulted in significantly improved detection and that this advantage would be most pronounced for tests with low to moderate analytical sensitivity, which would likely have missed infections if sampling in the evening. InterpretationCollecting samples for COVID-19 testing in the morning offers a simple and low-cost improvement to clinical diagnostic sensitivity of low- to moderate-analytical-sensitivity tests. The phenomenon of higher viral loads in the morning may also have implications related to when transmission is more likely to occur. FundingBill & Melinda Gates Foundation, Ronald and Maxine Linde Center for New Initiatives (Caltech), Jacobs Institute for Molecular Engineering for Medicine (Caltech) RESEARCH IN CONTEXTO_ST_ABSEvidence before this studyC_ST_ABSReliable COVID-19 diagnostic testing is critical to reducing transmission of SARS-CoV-2 and reducing cases of severe or fatal disease, particularly in areas with limited vaccine access or uptake. Saliva and anterior-nares nasal swabs are common sample types; however, different diagnostic tests using these sample types have a range of analytical sensitivities spanning 6 orders of magnitude, with limits of detection (LODs) between 102 and 108 genomic copy equivalents of SARS-CoV-2 RNA (copies) per mL of sample. Due to limitations in clinical laboratory capacity, many low-resource settings rely on COVID-19 tests that fall on the moderate (LODs of 104 to 105 copies/mL) to lower (LODs of 105 to 108 copies/mL) end of this spectrum of analytical sensitivity. Alterations in sample collection methods, including time of sample collection, may improve the performance of these diagnostics. Added value of this studyThis study quantifies viral loads from saliva and nasal-swab samples that were longitudinally self-collected by symptomatic patients in the morning immediately after waking and in the evening just prior to sleeping throughout the course of acute SARS-CoV-2 infection. The study cohort was composed of mildly or moderately symptomatic individuals (outpatients). This analysis demonstrates significantly higher viral loads in samples collected in the morning, relative to those collected in the evening. When using moderate to lower analytical sensitivity test methods, these loads are inferred to result in significantly better detection of infected individuals in the morning. Implications of available evidenceThese findings suggest that samples collected in the morning immediately after waking will better detect SARS-CoV-2 infection in symptomatic individuals tested by moderate to lower analytical sensitivity COVID-19 diagnostic tests (LODs at or above 104 viral copies per mL of sample), such as many rapid antigen tests currently available.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21254771

RESUMO

Early detection of SARS-CoV-2 infection is critical to reduce asymptomatic and pre-symptomatic transmission, curb the spread of variants by travelers, and maximize treatment efficacy. Low-sensitivity nasal-swab testing (antigen and some nucleic-acid-amplification tests) is commonly used for surveillance and symptomatic testing, but the ability of low-sensitivity nasal-swab tests to detect the earliest stages of infection has not been established. In this case-ascertained study, initially-SARS-CoV-2-negative household contacts of individuals diagnosed with COVID-19 prospectively self-collected paired anterior-nares nasal-swab and saliva samples twice daily for viral-load quantification by high-sensitivity RT-qPCR and digital-RT-PCR assays. We captured viral-load profiles from the incidence of infection for seven individuals and compared diagnostic sensitivities between respiratory sites. Among unvaccinated persons, high-sensitivity saliva testing detected infection up to 4.5 days before viral loads in nasal swabs reached the limit of detection of low-sensitivity nasal-swab tests. For most participants, nasal swabs reached higher peak viral loads than saliva, but were undetectable or at lower loads during the first few days of infection. High-sensitivity saliva testing was most reliable for earliest detection. Our study illustrates the value of acquiring early (within hours after a negative high-sensitivity test) viral-load profiles to guide the appropriate analytical sensitivity and respiratory site for detecting earliest infections. Such data are challenging to acquire but critical to design optimal testing strategies in the current pandemic and will be required for responding to future viral pandemics. As new variants and viruses emerge, up-to-date data on viral kinetics are necessary to adjust testing strategies for reliable early detection of infections.

5.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20239467

RESUMO

Transmission of SARS-CoV-2 in community settings often occurs before symptom onset, therefore testing strategies that can reliably detect people in the early phase of infection are urgently needed. Early detection of SARS-CoV-2 infection is especially critical to protect vulnerable populations who require frequent interactions with caretakers. Rapid COVID-19 tests have been proposed as an attractive strategy for surveillance, however a limitation of most rapid tests is their low sensitivity. Low-sensitivity tests are comparable to high sensitivity tests in detecting early infections when two assumptions are met: (1) viral load rises quickly (within hours) after infection and (2) viral load reaches and sustains high levels (>105- 106 RNA copies/mL). However, there are no human data testing these assumptions. In this study, we document a case of presymptomatic household transmission from a healthy young adult to a sibling and a parent. Participants prospectively provided twice-daily saliva samples. Samples were analyzed by RT-qPCR and RT-ddPCR and we measured the complete viral load profiles throughout the course of infection of the sibling and parent. This study provides evidence that in at least some human cases of SARS-CoV-2, viral load rises slowly (over days, not hours) and not to such high levels to be detectable reliably by any low-sensitivity test. Additional viral load profiles from different samples types across a broad demographic must be obtained to describe the early phase of infection and determine which testing strategies will be most effective for identifying SARS-CoV-2 infection before transmission can occur. One sentence summaryIn some human infections, SARS-CoV-2 viral load rises slowly (over days) and remains near the limit of detection of rapid, low-sensitivity tests.

6.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20077602

RESUMO

In response to the rapidly evolving COVID-19 pandemic, the U.S. Food and Drug Administration (FDA) has rapidly issued 49 emergency use authorizations (EUAs) for SARS-CoV-2 in vitro diagnostic test-kits. A critical metric in the performance evaluation for a diagnostic test kit is the analytical sensitivity, which is measured by the limit of detection (LOD). Commercial RNA stocks with known titers are used to determine LOD. We identified a problem with the titer reported for the commercial stocks when examining the analytical sensitivity of the reverse transcription quantitative PCR (RT-qPCR) protocol that is recommended by the Centers for Disease Control and Prevention (CDC) using plasmid DNA from Integrated DNA Technologies (IDT), synthetic RNA from BEI Resources (BEI), and extracted genomic RNA from BEI. We detected 3/3 positives for reactions containing synthetic RNA at a concentration of 0.1 copies/reaction (based on the suppliers label concentration). The apparent better-than-single-molecule performance is a statistically highly unlikely event, indicating a potential inaccuracy in the suppliers quantification of the stock material. Using an ultrasensitive and precise assay, reverse transcription digital PCR (RT-dPCR), we independently quantified concentrations of commercial SARS-CoV-2 plasmid DNA and SARS-CoV-2 RNA stocks. For plasmid DNA, the actual concentration measured by RT-dPCR was 11% of the nominal label concentration. For synthetic RNA, the actual concentration measured by RT-dPCR for one lot was 770% of the label concentration and for a different lot was 57% of the label concentration. For genomic RNA, the concentration measured by RT-dPCR for one lot was 240% of the label concentration and for a different lot it was 300% of the label concentration. This SARS-CoV-2 genomic RNA from BEI Resources has been used in at least 11 approved FDA Emergency Use Authorizations as of April 27, 2020. Such deviations of reported RNA or DNA stock concentrations from true concentrations can result in inaccurate quantification and calculation of LOD. Precise and accurate reporting of DNA and RNA stock concentrations by commercial suppliers will enable accurate quantification of assay performance, which is urgently needed to improve evaluation of different assays by diagnostic developers and regulatory bodies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...