Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21257700

RESUMO

BackgroundWe investigated the safety and immunogenicity of two recombinant COVID-19 DNA vaccine candidates in first-in-human trials. GX-19 contains plasmid DNA encoding SARS-CoV-2 spike protein, and GX-19N contains plasmid DNA encoding SARS-CoV-2 receptor binding domain (RBD) foldon and nucleocapsid protein (NP) as well as plasmid DNA encoding SARS-CoV-2 spike protein. MethodsTwo open-label phase 1 trials of GX-19 and GX-19N safety and immunogenicity were performed in healthy adults aged 19-55 years. GX-19 trial participants received two vaccine injections (1{middle dot}5 mg or 3{middle dot}0 mg, 1:1 ratio) four weeks apart. GX-19N trial participants received two 3{middle dot}0 mg vaccine injections four weeks apart. FindingsBetween June 17 and July 30 and December 28 and 31, 2020, 40 and 21 participants were enrolled in the GX-19 and GX-19N trials, respectively. Thirty-two participants (52{middle dot}5%) reported 80 treatment-emergent adverse events (AE) after vaccination. All solicited AEs were mild except one case of moderate fatigue reported in the 1{middle dot}5 mg GX-19 group. Binding antibody responses increased after vaccination in all groups. The geometric mean titers (GMTs) of spike-binding antibodies on day 57 were 85{middle dot}74, 144{middle dot}20, and 201{middle dot}59 in the 1{middle dot}5 mg, 3{middle dot}0 mg GX-19 groups and the 3{middle dot}0 mg GX-19N group, respectively. In GX-19N group, neutralizing antibody response (50% neutralizing titer using FRNT) significantly increased after vaccination, but GMT of neutralizing antibody on day 57 (37.26) was lower than those from human convalescent serum (288.78). GX-19N induced stronger T cell responses than GX-19. The magnitude of GX-19N-induced T cell responses was comparable to those observed in the convalescent PBMCs. GX-19N induced both SARS-CoV-2 spike- and NP-specific T cell responses, and the amino acid sequences of 15-mer peptides containing NP-specific T cell epitopes identified in GX-19N-vaccinated participants were identical with those of diverse SARS-CoV-2 variants InterpretationGX-19N is safe, tolerated and induces humoral and broad SARS-CoV-2-specific T cell response which may enable cross-reactivity to emerging SARS-CoV-2 variants. FundingThis research was supported by Korea Drug Development Fund funded by Ministry of Science and ICT, Ministry of Trade, Industry, and Energy, and Ministry of Health and Welfare (HQ20C0016, Republic of Korea). Research in contextO_ST_ABSEvidence before this studyC_ST_ABSTo overcome the COVID-19 outbreak, the development of safe and effective vaccines is crucial. Despite the successful clinical efficacy of the approved vaccines, concerns exist regarding emerging new SARS-CoV-2 variants that have mutated receptor binding domains in the spike protein. We searched PubMed for research articles published up to May 1, 2021, using various combinations of the terms "COVID-19" or "SARS-CoV-2", "vaccine", and "clinical trial". No language or data restrictions were applied. We also searched the ClinicalTrials.gov registry and World Health Organization (WHO) draft landscape of COVID-19 candidate vaccines for ongoing trials of COVID-19 vaccines up to May 1, 2021. Ten DNA-based vaccines, including the vaccine candidate reported here, are in ongoing clinical trials. Among these, safety and immunogenicity results were reported from only one phase 1 trial of a DNA vaccine against SARS-CoV-2 (INO-4800). INO-4800 demonstrated favorable safety and tolerability and was immunogenic, eliciting humoral and/or cellular immune responses in all vaccinated subjects. There is only one ongoing clinical trial of a vaccine against SARS-CoV-2 variants (mRNA-1273.351). Added value of this studyThis is the first-in-human phase 1 trial in healthy adults of a recombinant DNA vaccine for COVID-19 (GX-19N) containing the coding regions of both the spike and nucleocapsid proteins. This trial showed that GX-19N is safe, tolerated, and able to induce both humoral and cellular responses. A two-dose vaccination of 3{middle dot}0 mg GX-19N (on days 1 and 29) induced significant humoral and cellular responses. The neutralizing geometric mean titers in individuals vaccinated with GX-19N were lower than those of human convalescent sera. However, the GX-19N group showed increased T cell responses, which was similar to those analyzed using convalescent PBMCs. Furthermore, GX-19N induced not only SARS-CoV-2 spike-specific T cell responses but also broad nucleocapsid-specific T cell responses, which were also specific to SARS-CoV-2 variants. Implications of all the available evidenceIt is important to note that GX-19N contains a plasmid encoding both the spike and nucleocapsid proteins, and that it showed broad SARS-CoV-2-specific T cell responses, which may allow cross-reactivity with emerging SARS-CoV-2 variants. Based on these safety and immunogenicity findings, GX-19N was selected for phase 2 immunogenicity trials.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-334136

RESUMO

The unprecedented and rapid spread of SARS-CoV-2 has motivated the need for a rapidly producible and scalable vaccine. Here, we developed a synthetic soluble SARS-CoV-2 spike (S) DNA-based vaccine candidate, GX-19. In mice, immunization with GX-19 elicited not only S-specific systemic and pulmonary antibody responses but also Th1-biased T cell responses in a dose-dependent manner. GX-19 vaccinated nonhuman primate seroconverted rapidly and exhibited detectable neutralizing antibody response as well as multifunctional CD4+ and CD8+ T cell responses. Notably, when the immunized nonhuman primates were challenged at 10 weeks after the last vaccination with GX-19, they did not develop fever and reduced viral loads in contrast to non-vaccinated primates as a control. These findings indicate that GX-19 vaccination provides durable protective immune response and also support further development of GX-19 as a vaccine candidate for SARS-CoV-2 in human clinical trials.

3.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-716056

RESUMO

PURPOSE: Study on the pathogen and the pathogen-related disease require the information at both cellular and organism level. However, lack of appropriate high-quality antibodies and the difference between the experimental animal models make it difficult to analyze in vivo mechanism of pathogen-related diseases. For more reliable research on the infection and immune-response of pathogen-related diseases, accurate analysis is essential to provide spatiotemporal information of pathogens and immune activity to avoid false-positive or mis-interpretations. In this regards, we have developed a method for tracking Francisella tularensis in the animal model without using the specific antibodies for the F. tularensis. MATERIALS AND METHODS: A dual reporter plasmid using GFP-Lux with putative bacterioferritin promoter (pBfr) was constructed and transformed to F. tularensis live vaccine strain to generate F. tularensis LVS (FtLVS)-GFP-Lux for both fluorescence and bioluminescence imaging. For vaccination to F. tularensis infection, FtLVS and lipopolysaccharide (LPS) from FtLVS were used. RESULTS: We visualized the bacterial replication of F. tularensis in the cells using fluorescence and bioluminescence imaging, and traced the spatio-temporal process of F. tularensis pathogenesis in mice. Vaccination with LPS purified from FtLVS greatly reduced the bacterial replication of FtLVS in animal model, and the effect of vaccination was also successfully monitored with in vivo imaging. CONCLUSION: We successfully established dual reporter labeled F. tularensis for cellular and whole body imaging. Our simple and integrated imaging analysis system would provide useful information for in vivo analysis of F. tularensis infection as well as in vitro experiments, which have not been fully explained yet with various technical problems.


Assuntos
Animais , Camundongos , Anticorpos , Fluorescência , Francisella tularensis , Francisella , Vírus da Imunodeficiência Felina , Técnicas In Vitro , Métodos , Modelos Animais , Plasmídeos , Vacinação , Imagem Corporal Total
4.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-716054

RESUMO

Organoid is an in vitro multicellular form mimicking in vivo organ. Its similarity to human organ including cellular organization, molecular expression patterns, as well as genetic signatures enables to study the characteristics of infectious agents and host-pathogen interaction. For the features of organoid, this system also can be potentially used to cultivate currently uncultivable viruses of vaccine candidates. This paper will briefly describe problems in the current culture system for virus production and the possibility of organoid as culture system for viral vaccine and their current limitations that should be solved to meet the goal.


Assuntos
Humanos , Interações Hospedeiro-Patógeno , Técnicas In Vitro , Organoides , Vacinas Virais , Cultura de Vírus
5.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-184068

RESUMO

Assessing antigen concentration of vaccine is essential step in determining the quality of the vaccine prior to vaccination. After vaccination, vaccine-induced antibody titer should also be measured to verify the vaccine efficacy. Since conventional assay used for vaccine concentrations and induced Ab-titers is antibody-based enzyme-linked immunosorbent assay, the assay inevitably brings drawbacks of antibody such as high cost for production, limited stability, and inconsistent quality between lot-to-lots. Aptamer is single-stranded nucleic acid having three-dimensional structure and has features overcoming limitations of antibody. This review will briefly introduce the features of aptamer and potential of aptamer-based system for evaluation of vaccine efficacy.


Assuntos
Anticorpos , Ensaio de Imunoadsorção Enzimática , Vacinação , Vacinas
6.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-195046

RESUMO

Tularemia is a high-risk infectious disease caused by Gram-negative bacterium Francisella tularensis. Due to its high fatality at very low colony-forming units (less than 10), F. tularensis is considered as a powerful potential bioterrorism agent. Vaccine could be the most efficient way to prevent the citizen from infection of F. tularensis when the bioterrorism happens, but officially approved vaccine with both efficacy and safety is not developed yet. Research for the development of tularemia vaccine has been focusing on the live attenuated vaccine strain (LVS) for long history, still there are no LVS confirmed for the safety which should be an essential factor for general vaccination program. Furthermore the LVS did not show protection efficacy against high-risk subspecies tularensis (type A) as high as the level against subspecies holarctica (type B) in human. Though the subunit or recombinant vaccine candidates have been considered for better safety, any results did not show better prevention efficacy than the LVS candidate against F. tularensis infection. Currently there are some more trials to develop vaccine using mutant strains or nonpathogenic F. novicida strain, but it did not reveal effective candidates overwhelming the LVS either. Difference in the protection efficacy of LVS against type A strain in human and the low level protection of many subunit or recombinant vaccine candidates lead the scientists to consider the live vaccine development using type A strain could be ultimate answer for the tularemia vaccine development.


Assuntos
Humanos , Bioterrorismo , Doenças Transmissíveis , Francisella tularensis , Entorses e Distensões , Células-Tronco , Tularemia , Vacinação , Vacinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...