Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-451001

RESUMO

Precise characterization and targeting of host cell transcriptional machinery hijacked by SARS-CoV-2 remains challenging. To identify therapeutically targetable mechanisms that are critical for SARS-CoV-2 infection, here we elucidated the Master Regulator (MR) proteins representing mechanistic determinants of the gene expression signature induced by SARS-CoV-2. The analysis revealed coordinated inactivation of MR-proteins linked to regulatory programs potentiating efficiency of viral replication (detrimental host MR-signature) and activation of MR-proteins governing innate immune response programs (beneficial MR-signature). To identify MR-inverting compounds capable of rescuing activity of inactivated host MR-proteins, with-out adversely affecting the beneficial MR-signature, we developed the ViroTreat algorithm. Overall, >80% of drugs predicted to be effective by this methodology induced significant reduction of SARS-CoV-2 infection, without affecting cell viability. ViroTreat is fully generalizable and can be extended to identify drugs targeting the host cell-based MR signatures induced by virtually any pathogen.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-091256

RESUMO

Most antiviral agents are designed to target virus-specific proteins and mechanisms rather than the host cell proteins that are critically dysregulated following virus-mediated reprogramming of the host cell transcriptional state. To overcome these limitations, we propose that elucidation and pharmacologic targeting of host cell Master Regulator proteins--whose aberrant activities govern the reprogramed state of infected-coronavirus cells--presents unique opportunities to develop novel mechanism-based therapeutic approaches to antiviral therapy, either as monotherapy or as a complement to established treatments. Specifically, we propose that a small module of host cell Master Regulator proteins (ViroCheckpoint) is hijacked by the virus to support its efficient replication and release. Conventional methodologies are not well suited to elucidate these potentially targetable proteins. By using the VIPER network-based algorithm, we successfully interrogated 12h, 24h, and 48h signatures from Calu-3 lung adenocarcinoma cells infected with SARS-CoV, to elucidate the time-dependent reprogramming of host cells and associated Master Regulator proteins. We used the NYS CLIA-certified Darwin OncoTreat algorithm, with an existing database of RNASeq profiles following cell perturbation with 133 FDA-approved and 195 late-stage experimental compounds, to identify drugs capable of virtually abrogating the virus-induced Master Regulator signature. This approach to drug prioritization and repurposing can be trivially extended to other viral pathogens, including SARS-CoV-2, as soon as the relevant infection signature becomes available.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...