Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-455656

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) represents an unprecedented worldwide health problem. Although the primary site of infection is the lung, growing evidence points towards a crucial role of the intestinal epithelium. Yet, the exact effects of viral infection and the role of intestinal epithelial-immune cell interactions in mediating the inflammatory response are not known. In this work, we apply network biology approaches to single-cell RNA-seq data from SARS-CoV-2 infected human ileal and colonic organoids to investigate how altered intracellular pathways upon infection in intestinal enterocytes leads to modified epithelial-immune crosstalk. We point out specific epithelial-immune interactions which could help SARS-CoV-2 evade the immune response. By integrating our data with existing experimental data, we provide a set of epithelial ligands likely to drive the inflammatory response upon infection. Our integrated analysis of intra- and inter-cellular molecular networks contribute to finding potential drug targets, and suggest using existing anti-inflammatory therapies in the gut as promising drug repurposing strategies against COVID-19.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-451001

RESUMO

Precise characterization and targeting of host cell transcriptional machinery hijacked by SARS-CoV-2 remains challenging. To identify therapeutically targetable mechanisms that are critical for SARS-CoV-2 infection, here we elucidated the Master Regulator (MR) proteins representing mechanistic determinants of the gene expression signature induced by SARS-CoV-2. The analysis revealed coordinated inactivation of MR-proteins linked to regulatory programs potentiating efficiency of viral replication (detrimental host MR-signature) and activation of MR-proteins governing innate immune response programs (beneficial MR-signature). To identify MR-inverting compounds capable of rescuing activity of inactivated host MR-proteins, with-out adversely affecting the beneficial MR-signature, we developed the ViroTreat algorithm. Overall, >80% of drugs predicted to be effective by this methodology induced significant reduction of SARS-CoV-2 infection, without affecting cell viability. ViroTreat is fully generalizable and can be extended to identify drugs targeting the host cell-based MR signatures induced by virtually any pathogen.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-348854

RESUMO

ObjectiveExacerbated pro-inflammatory immune response contributes to COVID-19 pathology. Despite the evidence about SARS-CoV-2 infecting the human gut, little is known about the importance of the enteric phase of SARS-CoV-2 for the viral lifecycle and for the development of COVID-19-associated pathologies. Similarly, it remains unknown whether the innate immune response triggered in this organ to combat viral infection is similar or distinct compared to the one triggered in other organs. DesignWe exploited human ileum- and colon-derived organoids as a non-transformed culture model supporting SARS-CoV-2 infection. We characterized the replication kinetics of SARS-CoV-2 in intestinal epithelial cells and correlated the expression of the viral receptor ACE2 with infection. We performed conventional and targeted single-cell transcriptomics and multiplex single-molecule RNA fluorescence in situ hybridization and used IFN-reporter bioassays to characterize the response of primary human intestinal epithelial cells to SARS-CoV-2 infection. ResultsWe identified a subpopulation of enterocytes as the prime target of SARS-CoV-2. We found the lack of positive correlation between susceptibility to infection and the expression of ACE2 and revealed that SARS-CoV-2 downregulates ACE2 expression upon infection. Infected cells activated strong proinflammatory programs and produced interferon, while expression of interferon-stimulated genes was limited to bystander cells due to SARS-CoV-2 suppressing the autocrine action of interferon in infected cells. ConclusionOur findings reveal that SARS-CoV-2 curtails the immune response in primary human intestinal epithelial cells to promote its replication and spread and this highlights the gut as a proinflammatory reservoir that should be considered to fully understand SARS-CoV-2 pathogenesis. Significance of the studyWhat is already known about this subject? O_LICOVID-19 patients have gastrointestinal symptoms which likely correlates with SARS-CoV-2 infection of the intestinal epithelium C_LIO_LISARS-CoV-2 replicates in human intestinal epithelial cells. C_LIO_LIIntestinal organoids are a good model to study SARS-CoV-2 infection of the gastrointestinal tract C_LIO_LIThere is a limited interferon response in human lung epithelial cells upon SARS-CoV-2 infection. C_LI What are the new findings? O_LIA specific subpopulation of enterocytes are the prime targets of SARS-CoV-2 infection of the human gut. C_LIO_LIThere is a lack of correlation between ACE2 expression and susceptibility to SARS-CoV-2 infection. SARS-CoV-2 downregulates ACE2 expression upon infection. C_LIO_LIHuman intestinal epithelium cells produce interferon upon SARS-CoV-2 infection. C_LIO_LIInterferon acts in a paracrine manner to induce interferon stimulated genes that control viral infection only in bystander cells. C_LIO_LISARS-CoV-2 actively blocks interferon signaling in infected cells. C_LI How might it impact on clinical practice in the foreseeable future? O_LIThe absence of correlation between ACE2 levels and susceptibility suggest that medications influencing ACE2 levels (e.g. high blood pressure drugs) will not make patients more susceptible to SARS-CoV-2 infection. C_LIO_LIThe restricted cell tropism and the distinct immune response mounted by the GI tract, suggests that specific cellular restriction/replication factors and organ specific intrinsic innate immune pathways can represent unique therapeutic targets to treat COVD-19 patients by considering which organ is most infected/impacted by SARS-CoV-2. C_LIO_LIThe strong pro-inflammatory signal mounted by the intestinal epithelium can fuel the systemic inflammation observed in COVID-19 patients and is likely participating in the lung specific pathology. C_LI

4.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-059667

RESUMO

SARS-CoV-2 is an unprecedented worldwide health problem that requires concerted and global approaches to better understand the virus in order to develop novel therapeutic approaches to stop the COVID-19 pandemic and to better prepare against potential future emergence of novel pandemic viruses. Although SARS-CoV-2 primarily targets cells of the lung epithelium causing respiratory infection and pathologies, there is growing evidence that the intestinal epithelium is also infected. However, the importance of the enteric phase of SARS-CoV-2 for virus-induced pathologies, spreading and prognosis remains unknown. Here, using both colon-derived cell lines and primary non-transformed colon organoids, we engage in the first comprehensive analysis of SARS-CoV-2 lifecycle in human intestinal epithelial cells. Our results demonstrate that human intestinal epithelial cells fully support SARS-CoV-2 infection, replication and production of infectious de-novo virus particles. Importantly, we identified intestinal epithelial cells as the best culture model to propagate SARS-CoV-2. We found that viral infection elicited an extremely robust intrinsic immune response where, interestingly, type III interferon mediated response was significantly more efficient at controlling SARS-CoV-2 replication and spread compared to type I interferon. Taken together, our data demonstrate that human intestinal epithelial cells are a productive site of SARS-CoV-2 replication and suggest that the enteric phase of SARS-CoV-2 may participate in the pathologies observed in COVID-19 patients by contributing in increasing patient viremia and by fueling an exacerbated cytokine response.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...