Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21263348

RESUMO

The COVID-19 pandemic sparked rapid development of SARS-CoV-2 diagnostics. However, emerging variants pose the risk for target dropout and false-negative results secondary to primer/probe binding site (PBS) mismatches. The Agena MassARRAY(R) SARS-CoV-2 Panel combines RT-PCR and MALDI-TOF mass-spectrometry to probe for five targets across N and ORF1ab genes, which provides a robust platform to accommodate PBS mismatches in divergent viruses. Herein, we utilize a deidentified dataset of 1,262 SARS-CoV-2-positive specimens from Mount Sinai Health System (New York City) from December 2020 through April 2021 to evaluate target results and corresponding sequencing data. Overall, the level of PBS mismatches was greater in specimens with target dropout. Of specimens with N3 target dropout, 57% harbored an A28095T substitution that is highly-specific for the alpha (B.1.1.7) variant of concern. These data highlight the benefit of redundancy in target design and the potential for target performance to illuminate the dynamics of circulating SARS-CoV-2 variants.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21253234

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic has accelerated the need for rapid implementation of diagnostic assays for detection of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in respiratory specimens. While multiple molecular methods utilize nasopharyngeal specimens, supply chain constraints and need for easier and safer specimen collection warrant alternative specimen types, particularly saliva. Although saliva has been found to be a comparable clinical matrix for detection of SARS-CoV-2, evaluations of diagnostic and analytic performance across platforms for this specimen type are limited. Here, we compared two methods for SARS-CoV-2 detection in saliva: the Roche cobas(R) 6800/8800 SARS-CoV-2 real-time RT-PCR Test and the Agena Biosciences MassARRAY(R) SARS-CoV-2 Panel/MassARRAY(R) System. Overall, both systems had high agreement with one another, and both demonstrated high diagnostic sensitivity and specificity when compared to matched patient upper respiratory specimens. We also evaluated the analytical sensitivity of each platform and determined the limit of detection of the Roche assay was four times lower than that of Agena for saliva specimens (390.6 v. 1,562.5 copies/mL). Furthermore, across individual target components of each assay, T2 and N2 targets had the lowest limits of detection for each platform, respectively. Together, we demonstrate that saliva represents an appropriate specimen for SARS-CoV-2 detection in two technologies that have high agreement and differ in analytical sensitivities overall and across individual component targets. The addition of saliva as an acceptable specimen and understanding the sensitivity for testing on these platforms can further inform public health measures for screening and detection to combat the COVID-19 pandemic.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21251303

RESUMO

New York City (NYC) emerged as a coronavirus disease 2019 (COVID-19) epicenter in March 2020, but there is limited information regarding potentially unrecognized severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections before the first reported case. We utilized a sample pooling strategy to screen for SARS-CoV-2 RNA in de-identified, respiratory pathogen-negative nasopharyngeal specimens from 3,040 patients across our NYC health system who were evaluated for respiratory symptoms or influenza-like illness during the first 10 weeks of 2020. We obtained complete SARS-CoV-2 genome sequences from samples collected between late February and early March. Additionally, we detected SARS-CoV-2 RNA in pooled specimens collected in the week ending 25 January 2020, indicating that SARS-CoV-2 caused sporadic infections in NYC a full month before the first officially documented case.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20142190

RESUMO

By conducting a retrospective, cross-sectional analysis of SARS-CoV-2 seroprevalence in a sentinel group (enriched for SARS-CoV-2 infections) and a screening group (representative of the general population) using >5,000 plasma samples from patients at Mount Sinai Hospital in New York City (NYC), we identified seropositive samples as early as in the week ending February 23, 2020. A stark increase in seropositivity in the sentinel group started the week ending March 22 and in the screening group in the week ending March 29. By the week ending April 19, the seroprevalence in the screening group reached 19.3%, which is well below the estimated 67% needed to achieve community immunity to SARS-CoV-2. These data potentially suggest an earlier than previously documented introduction of SARS-CoV-2 into the NYC metropolitan area. One Sentence SummarySeroprevalence of SARS-CoV-2 in cross-sectional samples from New York City rose from 0% to 19.3% from early February to mid-April.

5.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20056929

RESUMO

New York City (NYC) has emerged as one of the epicenters of the current SARS-CoV2 pandemic. To identify the early events underlying the rapid spread of the virus in the NYC metropolitan area, we sequenced the virus causing COVID19 in patients seeking care at the Mount Sinai Health System. Phylogenetic analysis of 84 distinct SARS-CoV2 genomes indicates multiple, independent but isolated introductions mainly from Europe and other parts of the United States. Moreover, we find evidence for community transmission of SARS-CoV2 as suggested by clusters of related viruses found in patients living in different neighborhoods of the city.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...