Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(20)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34695982

RESUMO

There are multifarious stationary vehicles in urban driving environments. Autonomous vehicles need to make appropriate overtaking maneuver decisions to navigate through the stationary vehicles. In literature, overtaking maneuver decision problems have been addressed in the perspective of either discretionary lane-change or parked vehicle classification. While the former approaches are prone to generating undesired overtaking maneuvers in urban traffic scenarios, the latter approaches induce deadlock situations behind a stationary vehicle which is not distinctly classified as a parked vehicle. To overcome the limitations, we analyzed the significant decision factors in the traffic scenes and designed a Deep Neural Network (DNN) model to make human-like overtaking maneuver decisions. The significant traffic-related and intention-related decision factors were harmoniously extracted in the traffic scene interpretation process and were utilized as the inputs of the model to generate overtaking maneuver decisions in the same manner with the human driver. The overall validation results convinced that the extracted decision factors contributed to increasing the learning performance of the model, and consequently, the proposed decision-making system enabled the autonomous vehicles to generate more human-like overtaking maneuver decisions in various urban traffic scenarios.


Assuntos
Acidentes de Trânsito , Condução de Veículo , Cognição , Humanos , Intenção , Redes Neurais de Computação
2.
Sensors (Basel) ; 21(16)2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34450796

RESUMO

Predicting the trajectories of surrounding vehicles by considering their interactions is an essential ability for the functioning of autonomous vehicles. The subsequent movement of a vehicle is decided based on the multiple maneuvers of surrounding vehicles. Therefore, to predict the trajectories of surrounding vehicles, interactions among multiple maneuvers should be considered. Recent research has taken into account interactions that are difficult to express mathematically using data-driven deep learning methods. However, previous studies have only considered the interactions among observed trajectories due to subsequent maneuvers that are unobservable and numerous maneuver combinations. Thus, to consider the interaction among multiple maneuvers, this paper proposes a hierarchical graph neural network. The proposed hierarchical model approximately predicts the multiple maneuvers of vehicles and considers the interaction among the maneuvers by representing their relationships in a graph structure. The proposed method was evaluated using a publicly available dataset and a real driving dataset. Compared with previous methods, the results of the proposed method exhibited better prediction performance in highly interactive situations.


Assuntos
Condução de Veículo , Redes Neurais de Computação
3.
Sensors (Basel) ; 21(4)2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33671678

RESUMO

Autonomous driving helps drivers avoid paying attention to keeping to a lane or keeping a distance from the vehicle ahead. However, the autonomous driving is limited by the need to park upon the completion of driving. In this sense, automated valet parking (AVP) system is one of the promising technologies for enabling drivers to free themselves from the burden of parking. Nevertheless, the driver must continuously monitor the automated system in the current automation level. The main reason for monitoring the automation system is due to the limited sensor range and occlusions. For safety reasons, the current field of view must be taken into account, as well as to ensure comfort and to avoid unexpected and harsh reactions. Unfortunately, due to parked vehicles and structures, the field of view in a parking lot is not sufficient for considering new obstacles coming out of occluded areas. To solve this problem, we propose a method that estimates the risks for unobservable obstacles by considering worst-case assumptions. With this method, we can ensure to not act overcautiously while moving safe. As a result, the proposed method can be a proactive approach to consider the limited visibility encountered in a parking lot. In the proposed method, occlusion can be efficiently reflected in the planning process. The potential of the proposed method is evaluated in a variety of simulations.

4.
Sensors (Basel) ; 20(21)2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33182240

RESUMO

Advanced driver assistance system such as adaptive cruise control, traffic jam assistance, and collision warning has been developed to reduce the driving burden and increase driving comfort in the car-following situation. These systems provide automated longitudinal driving to ensure safety and driving performance to satisfy unspecified individuals. However, drivers can feel a sense of heterogeneity when autonomous longitudinal control is performed by a general speed planning algorithm. In order to solve heterogeneity, a speed planning algorithm that reflects individual driving behavior is required to guarantee harmony with the intention of the driver. In this paper, we proposed a personalized longitudinal driving system in a car-following situation, which mimics personal driving behavior. The system is structured by a multi-layer framework composed of a speed planner and driver parameter manager. The speed planner generates an optimal speed profile by parametric cost function and constraints that imply driver characteristics. Furthermore, driver parameters are determined by the driver parameter manager according to individual driving behavior based on real driving data. The proposed algorithm was validated through driving simulation. The results show that the proposed algorithm mimics the driving style of an actual driver while maintaining safety against collisions with the preceding vehicle.

5.
Sensors (Basel) ; 20(20)2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33086561

RESUMO

LiDAR-based Simultaneous Localization And Mapping (SLAM), which provides environmental information for autonomous vehicles by map building, is a major challenge for autonomous driving. In addition, the semantic information has been used for the LiDAR-based SLAM with the advent of deep neural network-based semantic segmentation algorithms. The semantic segmented point clouds provide a much greater range of functionality for autonomous vehicles than geometry alone, which can play an important role in the mapping step. However, due to the uncertainty of the semantic segmentation algorithms, the semantic segmented point clouds have limitations in being directly used for SLAM. In order to solve the limitations, this paper proposes a semantic segmentation-based LiDAR SLAM system considering the uncertainty of the semantic segmentation algorithms. The uncertainty is explicitly modeled by proposed probability models which are come from the data-driven approaches. Based on the probability models, this paper proposes semantic registration which calculates the transformation relationship of consecutive point clouds using semantic information with proposed probability models. Furthermore, the proposed probability models are used to determine the semantic class of the points when the multiple scans indicate different classes due to the uncertainty. The proposed framework is verified and evaluated by the KITTI dataset and outdoor environments. The experiment results show that the proposed semantic mapping framework reduces the errors of the mapping poses and eliminates the ambiguity of the semantic information of the generated semantic map.

6.
Sensors (Basel) ; 20(12)2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32586029

RESUMO

In automated parking systems, a path planner generates a path to reach the vacant parking space detected by a perception system. To generate a safe parking path, accurate detection performance is required. However, the perception system always includes perception uncertainty, such as detection errors due to sensor noise and imperfect algorithms. If the parking path planner generates the parking path under uncertainty, problems may arise that cause the vehicle to collide due to the automated parking system. To avoid these problems, it is a challenging problem to generate the parking path from the erroneous parking space. To solve this conundrum, it is important to estimate the perception uncertainty and adapt the detection error in the planning process. This paper proposes a robust parking path planning that combines an error-adaptive sampling of generating possible path candidates with a utility-based method of making an optimal decision under uncertainty.By integrating the sampling-based method and the utility-based method, the proposed algorithm continuously generates an adaptable path considering the detection errors. As a result, the proposed algorithm ensures that the vehicle is safely located in the true position and orientation of the parking space under perception uncertainty.

7.
Sensors (Basel) ; 19(19)2019 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-31547620

RESUMO

Point clouds from light detecting and ranging (LiDAR) sensors represent increasingly important information for environmental object detection and classification of automated and intelligent vehicles. Objects in the driving environment can be classified as either d y n a m i c or s t a t i c depending on their movement characteristics. A LiDAR point cloud is also segmented into d y n a m i c and s t a t i c points based on the motion properties of the measured objects. The segmented motion information of a point cloud can be useful for various functions in automated and intelligent vehicles. This paper presents a fast motion segmentation algorithm that segments a LiDAR point cloud into d y n a m i c and s t a t i c points in real-time. The segmentation algorithm classifies the motion of the latest point cloud based on the LiDAR's laser beam characteristics and the geometrical relationship between consecutive LiDAR point clouds. To accurately and reliably estimate the motion state of each LiDAR point considering the measurement uncertainty, both probability theory and evidence theory are employed in the segmentation algorithm. The probabilistic and evidential algorithm segments the point cloud into three classes: d y n a m i c , s t a t i c , and u n k n o w n . Points are placed in the u n k n o w n class when LiDAR point cloud is not sufficient for motion segmentation. The point motion segmentation algorithm was evaluated quantitatively and qualitatively through experimental comparisons with previous motion segmentation methods.

8.
Sensors (Basel) ; 19(19)2019 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-31561468

RESUMO

The connected powertrain control, which uses intelligent transportation system information, has been widely researched to improve driver convenience and energy efficiency. The vehicle state prediction on decelerating driving conditions can be applied to automatic regenerative braking in electric vehicles. However, drivers can feel a sense of heterogeneity when regenerative control is performed based on prediction results from a general prediction model. As a result, a deceleration prediction model which represents individual driving characteristics is required to ensure a more comfortable experience with an automatic regenerative braking control. Thus, in this paper, we proposed a deceleration prediction model based on the parametric mathematical equation and explicit model parameters. The model is designed specifically for deceleration prediction by using the parametric equation that describes deceleration characteristics. Furthermore, the explicit model parameters are updated according to individual driver characteristics using the driver's braking data during real driving situations. The proposed algorithm was integrated and validated on a real-time embedded system, and then, it was applied to the model-based regenerative control algorithm as a case study.

9.
Sensors (Basel) ; 19(18)2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31540382

RESUMO

The smart regenerative braking system (SRS) is an autonomous version of one-pedal driving in electric vehicles. To implement SRS, a deceleration planning algorithm is necessary to generate the deceleration used in automatic regenerative control. To reduce the discomfort from the automatic regeneration, the deceleration should be similar to human driving. In this paper, a deceleration planning algorithm based on multi-layer perceptron (MLP) is proposed. The MLP models can mimic the human driving behavior by learning the driving data. In addition, the proposed deceleration planning algorithm has a classified structure to improve the planning performance in each deceleration condition. Therefore, the individual MLP models were designed according to three different deceleration conditions: car-following, speed bump, and intersection. The proposed algorithm was validated through driving simulations. Then, time to collision and similarity to human driving were analyzed. The results show that the minimum time to collision was 1.443 s and the velocity root-mean-square error (RMSE) with human driving was 0.302 m/s. Through the driving simulation, it was validated that the vehicle moves safely with desirable velocity when SRS is in operation, based on the proposed algorithm. Furthermore, the classified structure has more advantages than the integrated structure in terms of planning performance.

10.
Sensors (Basel) ; 19(9)2019 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-31035672

RESUMO

Multi-sensor perception systems may have mismatched coordinates between each sensor even if the sensor coordinates are converted to a common coordinate. This discrepancy can be due to the sensor noise, deformation of the sensor mount, and other factors. These mismatched coordinates can seriously affect the estimation of a distant object's position and this error can result in problems with object identification. To overcome these problems, numerous coordinate correction methods have been studied to minimize coordinate mismatching, such as off-line sensor error modeling and real-time error estimation methods. The first approach, off-line sensor error modeling, cannot cope with the occurrence of a mismatched coordinate in real-time. The second approach, using real-time error estimation methods, has high computational complexity due to the singular value decomposition. Therefore, we present a fast online coordinate correction method based on a reduced sensor position error model with dominant parameters and estimate the parameters by using rapid math operations. By applying the fast coordinate correction method, we can reduce the computational effort within the necessary tolerance of the estimation error. By experiments, the computational effort was improved by up to 99.7% compared to the previous study, and regarding the object's radar the identification problems were improved by 94.8%. We conclude that the proposed method provides sufficient correcting performance for autonomous driving applications when the multi-sensor coordinates are mismatched.

11.
Sensors (Basel) ; 18(12)2018 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-30477194

RESUMO

Nowadays, many intelligent vehicles are equipped with various sensors to recognize their surrounding environment and to measure the motion or position of the vehicle. In addition, the number of intelligent vehicles equipped with a mobile Internet modem is increasing. Based on the sensors and Internet connection, the intelligent vehicles are able to share the sensor information with other vehicles via a cloud service. The sensor information sharing via the cloud service promises to improve the safe and efficient operation of the multiple intelligent vehicles. This paper presents a cloud update framework of occupancy grid maps for multiple intelligent vehicles in a large-scale environment. An evidential theory is applied to create the occupancy grid maps to address sensor disturbance such as measurement noise, occlusion and dynamic objects. Multiple vehicles equipped with LiDARs, motion sensors, and a low-cost GPS receiver create the evidential occupancy grid map (EOGM) for their passing trajectory based on GraphSLAM. A geodetic quad-tree tile system is applied to manage the EOGM, which provides a common tiling format to cover the large-scale environment. The created EOGM tiles are uploaded to EOGM cloud and merged with old EOGM tiles in the cloud using Dempster combination of evidential theory. Experiments were performed to evaluate the multiple EOGM mapping and the cloud update framework for large-scale road environment.

12.
Sensors (Basel) ; 18(12)2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30487399

RESUMO

A High-Definition map (HD map) is a precise and detailed map composed of various landmark feature layers. The HD map is a core technology that facilitates the essential functions of intelligent vehicles. Recently, it has come to be required for the HD map to continuously add new feature layers in order to increase the performances of intelligent vehicles in more complicated environments. However, it is difficult to generate a new feature layer for the HD map, because the conventional method of generating the HD map based on several professional mapping cars has high costs in terms of time and money due to the need to re-drive on all of the public roads. In order to reduce these costs, we propose a crowd-sourced mapping process of the new feature layer for the HD map. This process is composed of two steps. First, new features in the environments are acquired from multiple intelligent vehicles. The acquired new features build each new feature layer in each intelligent vehicle using the HD map-based GraphSLAM approach, and these new feature layers are conveyed to a map cloud through a mobile network system. Next, the crowd-sourced new feature layers are integrated into a new feature layer in a map cloud. In the simulation, the performance of the crowd-sourced process is then analyzed and evaluated. Experiments in real driving environments confirm the results of the simulation.

13.
Sensors (Basel) ; 18(9)2018 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-30231492

RESUMO

High Definition (HD) maps are becoming key elements of the autonomous driving because they can provide information about the surrounding environment of the autonomous car without being affected by the real-time perception limit. To provide the most recent environmental information to the autonomous driving system, the HD map must maintain up-to-date data by updating changes in the real world. This paper presents a simultaneous localization and map change update (SLAMCU) algorithm to detect and update the HD map changes. A Dempster⁻Shafer evidence theory is applied to infer the HD map changes based on the evaluation of the HD map feature existence. A Rao⁻Blackwellized particle filter (RBPF) approach is used to concurrently estimate the vehicle position and update the new map state. The detected and updated map changes by the SLAMCU are reported to the HD map database in order to reflect the changes to the HD map and share the changing information with the other autonomous cars. The SLAMCU was evaluated through experiments using the HD map of traffic signs in the real traffic conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...