Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Biol Inorg Chem ; 27(1): 201-213, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35006347

RESUMO

Tackling microbial resistance requires continuous efforts for the development of new molecules with novel mechanisms of action and potent antimicrobial activity. Our group has previously identified metal-based compounds, [Ag(1,10-phenanthroline-5,6-dione)2]ClO4 (Ag-phendione) and [Cu(1,10-phenanthroline-5,6-dione)3](ClO4)2.4H2O (Cu-phendione), with efficient antimicrobial action against multidrug-resistant species. Herein, we investigated the ability of Ag-phendione and Cu-phendione to bind with double-stranded DNA using a combination of in silico and in vitro approaches. Molecular docking revealed that both phendione derivatives can interact with the DNA by hydrogen bonding, hydrophobic and electrostatic interactions. Cu-phendione exhibited the highest binding affinity to either major (- 7.9 kcal/mol) or minor (- 7.2 kcal/mol) DNA grooves. In vitro competitive quenching assays involving duplex DNA with Hoechst 33258 or ethidium bromide demonstrated that Ag-phendione and Cu-phendione preferentially bind DNA in the minor grooves. The competitive ethidium bromide displacement technique revealed Cu-phendione has a higher binding affinity to DNA (Kapp = 2.55 × 106 M-1) than Ag-phendione (Kapp = 2.79 × 105 M-1) and phendione (Kapp = 1.33 × 105 M-1). Cu-phendione induced topoisomerase I-mediated DNA relaxation of supercoiled plasmid DNA. Moreover, Cu-phendione was able to induce oxidative DNA injuries with the addition of free radical scavengers inhibiting DNA damage. Ag-phendione and Cu-phendione avidly displaced propidium iodide bound to DNA in permeabilized Pseudomonas aeruginosa cells in a dose-dependent manner as judged by flow cytometry. The treatment of P. aeruginosa with bactericidal concentrations of Cu-phendione (15 µM) induced DNA fragmentation as visualized by either agarose gel or TUNEL assays. Altogether, these results highlight a possible novel DNA-targeted mechanism by which phendione-containing complexes, in part, elicit toxicity toward the multidrug-resistant pathogen P. aeruginosa.


Assuntos
Complexos de Coordenação , Pseudomonas aeruginosa , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Cobre/química , Cobre/farmacologia , DNA/química , Simulação de Acoplamento Molecular , Fenantrolinas/química , Fenantrolinas/farmacologia , Prata/farmacologia
2.
Antibiotics (Basel) ; 9(10)2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-33027987

RESUMO

Chronic infections of Pseudomonas aeruginosa in the lungs of cystic fibrosis (CF) patients are problematic in Ireland where inherited CF is prevalent. The bacteria's capacity to form a biofilm in its pathogenesis is highly virulent and leads to decreased susceptibility to most antibiotic treatments. Herein, we present the activity profiles of the Cu(II), Mn(II) and Ag(I) tdda-phen chelate complexes {[Cu(3,6,9-tdda)(phen)2].3H2O.EtOH}n (Cu-tdda-phen), {[Mn(3,6,9-tdda)(phen)2].3H2O.EtOH}n (Mn-tdda-phen) and [Ag2(3,6,9-tdda)(phen)4].EtOH (Ag-tdda-phen) (tddaH2 = 3,6,9-trioxaundecanedioic acid; phen = 1,10-phenanthroline) towards clinical isolates of P. aeruginosa derived from Irish CF patients in comparison to two reference laboratory strains (ATCC 27853 and PAO1). The effects of the metal-tdda-phen complexes and gentamicin on planktonic growth, biofilm formation (pre-treatment) and mature biofilm (post-treatment) alone and in combination were investigated. The effects of the metal-tdda-phen complexes on the individual biofilm components; exopolysaccharide, extracellular DNA (eDNA), pyocyanin and pyoverdine are also presented. All three metal-tdda-phen complexes showed comparable and often superior activity to gentamicin in the CF strains, compared to their activities in the laboratory strains, with respect to both biofilm formation and established biofilms. Combination studies presented synergistic activity between all three complexes and gentamicin, particularly for the post-treatment of established mature biofilms, and was supported by the reduction of the individual biofilm components examined.

3.
Braz J Microbiol ; 51(4): 1703-1710, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32737867

RESUMO

Therapeutic options are limited for patients infected with Acinetobacter baumannii due to its multidrug-resistance profile. So, the search for new antimicrobials against this gram-negative bacterial pathogen has become a worldwide priority. The present study aimed to evaluate the effects of 1,10-phenanthroline (phen), 1,10-phenanthroline-5,6-dione (phendione), [Ag(phendione)2]ClO4 (Ag-phendione) and [Cu(phendione)3](ClO4)2·4H2O (Cu-phendione) on 26 carbapenemase-producing A. baumannii strains. The susceptibility to carbapenems was performed by detecting the metallo-beta-lactamase (MBL) genes by PCR and by determining the MIC. Also, disk diffusion method was applied to evaluate the susceptibility to other antimicrobial classes. The test compounds were evaluated on both planktonic- and biofilm-growing bacterial cells. The results revealed that all A. baumannii strains had the intrinsic blaoxa-51 gene, and at least one of the blaoxa-23 or blaoxa-24 genes. The geometric mean MIC and minimum bactericidal concentration (MBC) values, respectively, were as follows: Cu-phendione (1.56 and 2.30 µM), Ag-phendione (2.48 and 3.63 µM), phendione (9.44 and 9.70 µM), and phen (70.46 and 184.28 µM). The test compounds (at 0.5 × MIC) affected the biofilm formation and disrupted the mature biofilm, in a typically dose-dependent manner, reducing biomass and viability parameters. Collectively, silver and copper-phendione derivatives presented potent antimicrobial action against planktonic- and biofilm-forming cells of carbapenemase-producing A. baumannii.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Biofilmes/efeitos dos fármacos , Fenantrolinas/farmacologia , beta-Lactamases/metabolismo , Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/crescimento & desenvolvimento , Acinetobacter baumannii/isolamento & purificação , Acinetobacter baumannii/metabolismo , Antibacterianos/química , Biofilmes/crescimento & desenvolvimento , Carbapenêmicos/farmacologia , Cobre/química , Cobre/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Fenantrolinas/química , Prata/química , Prata/farmacologia
4.
Front Microbiol ; 11: 470, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32265890

RESUMO

Candida haemulonii is an emerging opportunistic pathogen resistant to most antifungal drugs currently used in clinical arena. Metal complexes containing 1,10-phenanthroline (phen) chelating ligands have well-established anti-Candida activity against different medically relevant species. This study utilized larvae of Galleria mellonella, a widely used model of in vivo infection, to examine C. haemulonii infection characteristics in response to different copper(II), manganese(II), and silver(I) chelates containing phen, which had demonstrated potent anti-C. haemulonii activity in a previous study. The results showed that C. haemulonii virulence was influenced by inoculum size and incubation temperature, and the host G. mellonella immune response was triggered in an inoculum-dependent manner reflected by the number of circulating immune cells (hemocytes) and observance of larval melanization process. All test chelates were non-toxic to the host in concentrations up to 10 µg/larva. The complexes also affected the G. mellonella immune system, affecting the hemocyte number and the expression of genes encoding antifungal and immune-related peptides (e.g., inducible metalloproteinase inhibitor protein, transferrin, galiomycin, and gallerimycin). Except for [Ag2(3,6,9-tdda)(phen)4].EtOH (3,6,9-tddaH2 = 3,6,9-trioxoundecanedioic acid), all chelates were capable of affecting the fungal burden of infected larvae and the virulence of C. haemulonii in a dose-dependent manner. This work shows that copper(II), manganese(II), and silver(I) chelates containing phen with anti-C. haemulonii activity are capable of (i) inhibiting fungal proliferation during in vivo infection, (ii) priming an immune response in the G. mellonella host and (iii) affecting C. haemulonii virulence.

5.
Front Microbiol ; 10: 1701, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31428062

RESUMO

Elastase B (lasB) is a multifunctional metalloenzyme secreted by the gram-negative pathogen Pseudomonas aeruginosa, and this enzyme orchestrates several physiopathological events during bacteria-host interplays. LasB is considered to be a potential target for the development of an innovative chemotherapeutic approach, especially against multidrug-resistant strains. Recently, our group showed that 1,10-phenanthroline-5,6-dione (phendione), [Ag(phendione)2]ClO4 (Ag-phendione) and [Cu(phendione)3](ClO4)2.4H2O (Cu-phendione) had anti-P. aeruginosa action against both planktonic- and biofilm-growing cells. In the present work, we have evaluated the effects of these compounds on the (i) interaction with the lasB active site using in silico approaches, (ii) lasB proteolytic activity by using a specific fluorogenic peptide substrate, (iii) lasB gene expression by real time-polymerase chain reaction, (iv) lasB protein secretion by immunoblotting, (v) ability to block the damages induced by lasB on a monolayer of lung epithelial cells, and (vi) survivability of Galleria mellonella larvae after being challenged with purified lasB and lasB-rich bacterial secretions. Molecular docking analyses revealed that phendione and its Ag+ and Cu2+ complexes were able to interact with the amino acids forming the active site of lasB, particularly Cu-phendione which exhibited the most favorable interaction energy parameters. Additionally, the test compounds were effective inhibitors of lasB activity, blocking the in vitro cleavage of the peptide substrate, aminobenzyl-Ala-Gly-Leu-Ala-p-nitrobenzylamide, with Cu-phendione having the best inhibitory action (K i = 90 nM). Treating living bacteria with a sub-inhibitory concentration (½ × MIC value) of the test compounds caused a significant reduction in the expression of the lasB gene as well as its mature protein production/secretion. Further, Ag-phendione and Cu-phendione offered protective action for lung epithelial cells, reducing the A549 monolayer damage by approximately 32 and 42%, respectively. Interestingly, Cu-phendione mitigated the toxic effect of both purified lasB molecules and lasB-containing bacterial secretions in the in vivo model, increasing the survival time of G. mellonella larvae. Collectively, these data reinforce the concept of lasB being a veritable therapeutic target and phendione-based compounds (mainly Cu-phendione) being prospective anti-virulence drugs against P. aeruginosa.

6.
J Inorg Biochem ; 186: 317-328, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30025225

RESUMO

Two complexes [AgI(pmtbH)]4 (1) and {[Ag4(pmtbH)4(NO3)4·2X}n (2) (where pmtbH is 2-[(2-pyridinylmethyl)thio]-1H-benzimidazole and X is H2O or MeOH) were synthesised and structurally characterised. Complex 2 showed therapeutic potential against Candida albicans, Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa but complex 1 did not show significant activity in vitro. Further in vivo studies using larvae of the insect Galleria mellonella indicated that complex 2 significantly stimulates the immune system and that pre-treatment with the complex offers appreciable protection against all three bacteria. Real-time flow cytometry data support the observed antimicrobial profile of complex 2 and suggest the antimicrobial response may be linked to a form of bacterial programmed cell death (PCD). Complex 2 was found to interact with DNA in the bacterial and fungal cells but it did not cleave plasmid DNA isolated from the three bacteria.


Assuntos
Antibacterianos , Antifúngicos , Bactérias/crescimento & desenvolvimento , Candida albicans/crescimento & desenvolvimento , Complexos de Coordenação , Omeprazol , Prata , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Antifúngicos/farmacologia , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Testes de Sensibilidade Microbiana , Omeprazol/química , Omeprazol/farmacologia , Prata/química , Prata/farmacologia
7.
Enferm. infecc. microbiol. clín. (Ed. impr.) ; 35(10): 630-637, dic. 2017. tab, ilus, graf
Artigo em Inglês | IBECS | ID: ibc-169562

RESUMO

Background: Pseudomonas aeruginosa is an important human pathogen that causes severe infections in a wide range of immunosuppressed patients. Herein, we evaluated the proteolytic profiles of 96 Brazilian clinical isolates of P. aeruginosa recovered from diverse anatomical sites. Methods: Cell-associated and extracellular proteases were evidenced by gelatin-SDS-PAGE and by the cleavage of soluble gelatin. Elastase was measured by using the peptide substrate N-succinyl-Ala-Ala-Ala-p-nitroanilide. The prevalence of elastase genes (lasA and lasB) was evaluated by PCR. Results: Bacterial extracts were initially applied on gelatin-SDS-PAGE and the results revealed four distinct zymographic profiles as follows: profile I (composed by bands of 145, 118 and 50kDa), profile II (118 and 50kDa), profile III (145kDa) and profile IV (118kDa). All the proteolytic enzymes were inhibited by EDTA, identifying them as metalloproteases. The profile I was the most detected in both cellular (79.2%) and extracellular (84.4%) extracts. Overall, gelatinase and elastase activities measured in the spent culture media were significantly higher (around 2-fold) compared to the cellular extracts and the production level varied according to the site of bacterial isolation. For instance, tracheal secretion isolates produced elevated amount of gelatinase and elastase measured in both cellular and extracellular extracts. The prevalence of elastase genes revealed that 100% isolates were lasB-positive and 85.42% lasA-positive. Some positive/negative correlations were showed concerning the production of gelatinase, elastase, isolation site and antimicrobial susceptibility. Conclusion: The protease production was highly heterogeneous in Brazilian clinical isolates of P. aeruginosa, which corroborates the genomic/metabolic versatility of this pathogen (AU)


Antecedentes: Pseudomonas aeruginosa (P. aeruginosa) es un importante patógeno humano que causa graves infecciones en diversos tipos de pacientes inmunodeprimidos. En este trabajo evaluamos los perfiles proteolíticos de 96 aislamientos clínicos brasileños de P. aeruginosaaislados de diferentes localizaciones anatómicas. Métodos: Las proteasas extracelulares y de extractos celulares fueron analizadas por SDS-PAGE copolimerizada con gelatina y a través de clivaje de gelatina en solución. La elastasa fue medida usando el substrato peptídico N-succinil-Ala-Ala-Ala-p-nitroanilida. La prevalencia de genes codificantes para elastasa (lasA y lasB) fue evaluada por PCR. Resultados: En primer lugar, los extractos de las bacterias fueron aplicados en geles de SDS-PAGE-gelatina, los cuales, después de revelados, revelaron 4 perfiles enzimográficos, así: perfil I(compuesto por bandas de 145, 118 y 50kDa), perfil II (118 y 50kDa), perfil III (145kDa) y perfil IV (118kDa). Todas las enzimas proteolíticas fueron inhibidas por EDTA, siendo, por tanto, identificadas como metaloproteasas. El perfil I fue el más detectado tanto en los extractos celulares (79,2%) como en los extracelulares (84,4%). Las actividades de gelatinasa y elastasa medidas en el medio de cultivo fueron significativamente más elevadas (cerca de 2 veces) que en los extractos celulares y el nivel de producción varió de acuerdo al sitio del cual fue aislada la cepa. Por ejemplo, cepas aisladas de secreción traqueal produjeron cantidades elevadas de gelatinasa y elastasa medidas tanto en el extracto celular como en los extractos extracelulares. La prevalencia de los genes de elastasa reveló que el 100% de los aislamientos fueron lasB positivos y 85.42% lasA positivos. En algunos casos se observó una correlación positiva/negativa respecto a la producción de gelatinasa, elastasa, sitio de aislamiento y susceptibilidad antimicrobiana. Conclusión: La producción de proteasas fue altamente heterogénea en los aislamientos clínicos brasileños de P. aeruginosa, lo cual corroboran la versatilidad genómica/metabólica de este patógeno (AU)


Assuntos
Humanos , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/isolamento & purificação , Peptídeo Hidrolases/isolamento & purificação , Gelatinases/isolamento & purificação , Análise de Variância
8.
Curr Top Med Chem ; 17(11): 1280-1302, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27697043

RESUMO

The "antibiotic era", characterized by the overuse and misuse of antibiotics, over the last half-century has culminated in the present critical "era of resistance". The treatment of bacterial infections is challenging because of a decline in the current arsenal of useful antibiotics and the slow rate of new drug development. The discovery of a new gene (mcr-1) in 2015, which enables bacteria to be highly resistant to polymyxins (such as colistin), the last line of antibiotic defence left, heralds a new level of concern as this gene is susceptible to horizontal gene transfer, with alarming potential to be spread between different bacterial populations, suggesting that the progression from "extensive drug resistance" to "pan-drug resistance" may be inevitable. Clearly there is a need for the development of novel classes of anti-bacterial agents capable of killing bacteria through mechanisms that are different to those of the known classes of antibiotics. 1,10-phenanthroline (phen) is a heterocyclic organic compound which exerts in vitro antimicrobial activity against a broad-spectrum of bacteria. The antimicrobial activity of phen can be significantly modulated by modifying its structure. The development of metal-phen complexes offers the medicinal chemist an opportunity to expand such structural diversity by controlling the geometry and varying the oxidation states of the metal centre, with the inclusion of appropriate auxiliary ligands in the structure, offering the opportunity to target different biochemical pathways in bacteria. In this review, we summarize what is currently known about the antibacterial capability of metal-phen complexes and their mechanisms of action.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Infecções Bacterianas/tratamento farmacológico , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Compostos Organometálicos/química , Compostos Organometálicos/farmacologia , Fenantrolinas/farmacologia , Antibacterianos/síntese química , Bactérias/efeitos dos fármacos , Infecções Bacterianas/microbiologia , Descoberta de Drogas , Humanos , Testes de Sensibilidade Microbiana , Compostos Organometálicos/síntese química , Fenantrolinas/química
9.
Enferm Infecc Microbiol Clin ; 35(10): 630-637, 2017 Dec.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-27480954

RESUMO

BACKGROUND: Pseudomonas aeruginosa is an important human pathogen that causes severe infections in a wide range of immunosuppressed patients. Herein, we evaluated the proteolytic profiles of 96 Brazilian clinical isolates of P. aeruginosa recovered from diverse anatomical sites. METHODS: Cell-associated and extracellular proteases were evidenced by gelatin-SDS-PAGE and by the cleavage of soluble gelatin. Elastase was measured by using the peptide substrate N-succinyl-Ala-Ala-Ala-p-nitroanilide. The prevalence of elastase genes (lasA and lasB) was evaluated by PCR. RESULTS: Bacterial extracts were initially applied on gelatin-SDS-PAGE and the results revealed four distinct zymographic profiles as follows: profile I (composed by bands of 145, 118 and 50kDa), profile II (118 and 50kDa), profile III (145kDa) and profile IV (118kDa). All the proteolytic enzymes were inhibited by EDTA, identifying them as metalloproteases. The profile I was the most detected in both cellular (79.2%) and extracellular (84.4%) extracts. Overall, gelatinase and elastase activities measured in the spent culture media were significantly higher (around 2-fold) compared to the cellular extracts and the production level varied according to the site of bacterial isolation. For instance, tracheal secretion isolates produced elevated amount of gelatinase and elastase measured in both cellular and extracellular extracts. The prevalence of elastase genes revealed that 100% isolates were lasB-positive and 85.42% lasA-positive. Some positive/negative correlations were showed concerning the production of gelatinase, elastase, isolation site and antimicrobial susceptibility. CONCLUSION: The protease production was highly heterogeneous in Brazilian clinical isolates of P. aeruginosa, which corroborates the genomic/metabolic versatility of this pathogen.


Assuntos
Proteínas de Bactérias/análise , Metaloproteases/análise , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/enzimologia , Proteínas de Bactérias/genética , Líquidos Corporais/microbiologia , Brasil , Fibrose Cística/complicações , Ácido Edético/farmacologia , Eletroforese em Gel de Poliacrilamida , Gelatinases/antagonistas & inibidores , Gelatinases/genética , Gelatinases/isolamento & purificação , Genes Bacterianos , Humanos , Metaloproteases/antagonistas & inibidores , Metaloproteases/genética , Especificidade de Órgãos , Elastase Pancreática/antagonistas & inibidores , Elastase Pancreática/genética , Elastase Pancreática/isolamento & purificação , Pneumonia Bacteriana/microbiologia , Inibidores de Proteases/farmacologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/isolamento & purificação , Reto/microbiologia , Sistema Respiratório/microbiologia , Virulência , Infecção dos Ferimentos/microbiologia
10.
J Antimicrob Chemother ; 71(1): 128-34, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26416778

RESUMO

OBJECTIVES: The beneficial antimicrobial properties of 1,10-phenanthroline (phen)-based drugs, together with the imperative need to develop new chemotherapeutic options for prevention/treatment of infections caused by MDR Gram-negative bacteria, led us to evaluate the effects of phen, 1,10-phenanthroline-5,6-dione (phendione), [Ag(phendione)2]ClO4 and [Cu(phendione)3](ClO4)2·4H2O on planktonic- and biofilm-growing Pseudomonas aeruginosa. METHODS: Thirty-two non-duplicated Brazilian clinical isolates of P. aeruginosa with distinct genetic backgrounds were used in all experiments. The effect of test compounds on planktonic bacterial proliferation was determined as recommended by CLSI protocol. The effect on biofilm formation was evaluated by crystal violet incorporation (biomass determination) and XTT (viability assay). Mature biofilm disorganization was evidenced by staining with crystal violet. RESULTS: Phen-based compounds presented anti-P. aeruginosa activity, but with different potencies concerning the geometric mean MIC: [Cu(phendione)3](2+) (7.76 µM) > [Ag(phendione)2](+) (14.05 µM) > phendione (31.15 µM) > phen (579.28 µM). MICs of each compound were similar irrespective of whether the P. aeruginosa isolates were susceptible or resistant to classical antimicrobials (ceftazidime, meropenem and imipenem). The pretreatment of bacteria with phen, phendione and phendione's metal derivatives at 0.5 × MIC value inhibited biofilm formation, particularly the use of [Cu(phendione)3](2+) and [Ag(phendione)2](+), which significantly reduced both biomass (48% and 44%, respectively) and viability (78% and 77%, respectively). The compounds studied also disrupted mature biofilm in a dose-dependent manner, especially [Ag(phendione)2](+) and [Cu(phendione)3](2+) (IC50, 9.39 and 10.16 µM, respectively). CONCLUSIONS: Coordination of phendione to Ag(+) and Cu(2+) represents a new promising group of anti-infective agents, which revealed a potent anti-P. aeruginosa action against both planktonic- and biofilm-growing cells.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Cobre/farmacologia , Fenantrolinas/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Prata/farmacologia , Brasil , Humanos , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/isolamento & purificação , Pseudomonas aeruginosa/fisiologia
11.
Curr Med Chem ; 22(18): 2199-224, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25850770

RESUMO

Tuberculosis (TB) which is caused by the resilient pathogen Mycobacterium tuberculosis (MTB) has re-emerged to become a leading public health problem in the world. The growing number of multi-drug resistant MTB strains and the more recently emerging problem with the extensively drug resistant strains of the pathogen are greatly undermining conventional anti-TB therapeutic strategies which are lengthy and expose patients to toxicity and other unwanted side effects. The search for new anti-TB drugs essentially involves either the repurposing of existing organic drugs which are now off patent and already FDA approved, the synthesis of modified analogues of existing organic drugs, with the aim of shortening and improving drug treatment for the disease, or the search for novel structures that offer the possibility of new mechanisms of action against the mycobacterium. Inorganic medicinal chemistry offers an alternative to organic drugs through opportunities for the design of therapeutics that target different biochemical pathways. The incorporation of metal ions into the molecular structure of a potential drug offers the medicinal chemist an opportunity to exploit structural diversity, have access to various oxidation states of the metal and also offer the possibility of enhancing the activity of an established organic drug through its coordination to the metal centre. In this review, we summarize what is currently known about the antitubercular capability of metal complexes, their mechanisms of action and speculate on their potential applications in the clinic.


Assuntos
Antituberculosos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose/tratamento farmacológico , Antituberculosos/química , Química Farmacêutica , Farmacorresistência Bacteriana/efeitos dos fármacos , Humanos , Estrutura Molecular , Mycobacterium tuberculosis/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...