Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 20130, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978234

RESUMO

This research aimed to investigate the effects of supplements containing fermented feed made from Citri Sarcodactylis Fructus by-products (CSFBP-Fermented feed) on the growth performance, immunological function, and gut health of broilers. 1080 cyan-shank partridge birds aged 47 days were chosen and casually distributed to four groups, each with 6 replicates and 45 birds per replicate. The experimental groups were provided with 1% (group T2), 3% (group T3) and 5% (group T4) of CSFBP-fermented feed in the basic diet, while the control group (group T1) received the basic diet. The findings revealed that supplementation with CSFBP-Fermented feed reduced ADFI and FCR and improved ADG in birds (P < 0.05). MDA levels in the serum of birds fed CSFBP-fermented feed were lower than in the control group (P < 0.05). The CAT activity in the serum of broilers increased after supplementation with 3% CSFBP-Fermented feed (P < 0.05). Supplementing broilers with CSFBP-fermented feed enhanced VH in the ileum, jejunum, and duodenum (P < 0.05). The addition of 3% CSFBP-Fermented feed decreased CD in the jejunum (P < 0.05). The addition of 3% and 5% CSFBP-Fermented feed increased the mRNA expression of ZO-1 and Occludin in the jejunum of broiler chickens and reduced the mRNA expression of IL-6 (P < 0.05). The addition of 3% CSFBP-Fermented feed increased the mRNA expression of Claudin in the jejunum of broiler chickens and reduced IL-1ß mRNA expression (P < 0.05). Compared to the control group, all experimental groups exhibited decreased mRNA expression of TNF-α and INF-γ in the jejunal mucosa of the birds (P < 0.05). According to research using high-throughput sequencing of microorganisms' 16S rDNA, and an analysis of α-diversity found that supplementing broilers with 3% CSFBP-Fermented feed decreased the number of bacteria in their cecum (P < 0.05). Bacteroidota was higher in all groups after supplementation with CSFBP-Fermented feed. At the genus level, after addition with 3% CSFBP-Fermented feed, the abundance of Bacteroide and Prevotellaceae_Ga6A1_group were higher than the control group (33.36% vs 29.95%, 4.35% vs 2.94%). The abundance of Rikenellaceae_RC9_gut_group and Fusobacterium were lower than the control group (5.52% vs. 7.17%,0.38% vs. 1.33%). In summary, supplementing the diet with CSFBP-Fermented feed can promote the growth of performance by enhancing intestinal morphology, and barrier function, as well as modulating intestinal inflammatory factors and microbial composition in broilers.


Assuntos
Galinhas , Galliformes , Animais , Galinhas/microbiologia , Suplementos Nutricionais/análise , Dieta/veterinária , RNA Mensageiro/metabolismo , Ração Animal/análise
2.
Front Vet Sci ; 10: 1231996, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37470069

RESUMO

This research aimed to assess the impact of fermented Citri Sarcodactylis Fructus by-products (FCSF) on the growth performance, gut digestive enzyme activity, nutrient utilization efficiency, gut microbiota, and their metabolites in broiler chickens. A total of 1,080 male broiler chickens were allocated into four groups (T1-T4) consisting of 6 replicates per group, each containing 45 chickens. The basal diet was provided to group T1, while groups T2, T3, and T4 were supplemented with 1%, 3%, and 5% FCSF in the basal diet, respectively. The experimental period was 42 days. The findings revealed that supplementing FCSF improved the FW and ADG of broiler chickens, and led to a reduction in the F/G, ADFI, and mortality rate of broiler chickens (p < 0.05). Furthermore, supplementation with 3% and 5% FCSF improved the thigh yield, semi-eviscerated carcass yield, slaughter yield, and lipase activity in the duodenum and ileum of birds (p < 0.05). Additionally, supplementing 3% FCSF enhanced the activity of protease in the duodenum of broilers (p < 0.05). Moreover, supplementing 3% FCSF enhanced the utilization of total phosphorus, dry matter, crude protein, and crude ash in the feed by broilers (p < 0.05). Compared with the control group, supplementation of 3% and 5% FCSF reduced the serine content in broiler chicken breast meat (p < 0.05). Supplementing 1% FCSF significantly increased the C14:0, C14:1, and C20:1 content in the breast meat compared to the other experimental groups (p < 0.05). The levels of C20:4n6 and C23:0 in the breast meat of birds of FCSF supplemented groups were lower than in T1 (p < 0.05). Furthermore, the content of ∑ω-3PUFA decreased after supplementing with 3% and 5% FCSF (p < 0.05). 16SrDNA showed that supplementing 3% FCSF reduced the ACE, Chao1, and Shannon indices in the cecum of birds (p < 0.05). Supplementing 3% FCSF also decreased the abundance of the phylum Desulfobacterota and improved genera Coprobacter and Prevotella in the cecum of broiler chickens (p < 0.05). Metabolomic analysis of the gut microbiota revealed that supplementing 3% FCSF upregulated 6 metabolites and downregulated 16 metabolites (p < 0.05). Moreover, supplementing 3% FCSF downregulated 12 metabolic pathways and upregulated 3 metabolic pathways (p < 0.05). In summary our findings indicate that supplementing FCSF can improve the growth performance of broiler chickens by enhancing intestinal digestive enzyme activity, nutrient utilization, improving gut microbial diversity, and influencing the metabolism of gut microbiota.

3.
Front Vet Sci ; 10: 1157935, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37056232

RESUMO

Introduction: The purpose of this research was to investigate how dietary supplementation with fermented herbal residues (FCMR) affected birds' development capacity, quality of meat, gut barrier, and cecum microbiota. Methods: 540 cyan-shank partridge birds aged 47 days were chosen and divided into two groups of six replicates each and 45 birds for each replicate. The control group (CON) received a basal diet, while the trial group decreased a basic diet containing 5% FCMR. Results and discussion: The findings revealed that the addition of FCMR decreased FCR and increased ADG in broilers (P < 0.05). Adding FCMR increased steaming loss in broiler chicken breasts (p < 0.05). Supplementation with FCMR significantly enhanced VH/CD and VH in the bird's intestine (jejunum, duodenum, and ileum) (p < 0.05). In addition, the addition of FCMR significantly down-regulated mRNA expression of INF-γ, IL-6, IL-1ß, and TNF-α and up-regulated mRNA expression of ZO-1, Occludin, and Claudin (P < 0.05). Microbial 16S rDNA high-throughput sequencing study revealed that supplements with FCMR modified the cecum microbiota, and α-diversity analysis showed that supplementation with FCMR reduced the cecum bacterial abundance in broilers (P < 0.05). At the phylum level, the relative abundance of Spirochaetota increased considerably following FCMR supplementation (P < 0.05). The broiler cecum's close lot of Prevotellaceae_UCG-001 (P < 0.05), Desulfovibrio, Muribaculaceae, and Fusobacterium (p < 0.05) reduced when FCMR was supplemented. Supplementation with FCMR can promote growth capacity and maintain intestinal health in birds by enhancing gut barrier function and modulating the inflammatory response and microbial composition.

4.
Plant Biotechnol J ; 19(8): 1644-1657, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33740293

RESUMO

Circadian clock, an endogenous time-setting mechanism, allows plants to adapt to unstable photoperiod conditions and induces flowering with proper timing. In Arabidopsis, the central clock oscillator was formed by a series of interlocked transcriptional feedback loops, but little is known in rice so far. By MutMap technique, we identified the candidate gene OsLHY from a later flowering mutant lem1 and further confirmed it through genetic complementation, RNA interference knockdown, and CRISPR/Cas9-knockout. Global transcriptome profiling and expression analyses revealed that OsLHY might be a vital circadian rhythm component. Interestingly, oslhy flowered later under ≥12 h day length but headed earlier under ≤11 h day length. qRT-PCR results exhibited that OsLHY might function through OsGI-Hd1 pathway. Subsequent one-hybrid assays in yeast, DNA affinity purification qPCR, and electrophoretic mobility shift assays confirmed OsLHY could directly bind to the CBS element in OsGI promoter. Moreover, the critical day length (CDL) for function reversal of OsLHY in oslhy (11-12 h) was prolonged in the double mutant oslhy osgi (about 13.5 h), indicating that the CDL set by OsLHY was OsGI dependent. Additionally, the dual function of OsLHY entirely relied on Hd1, as the double mutant oslhy hd1 showed the same heading date with hd1 under about 11.5, 13.5, and 14 h day lengths. Together, OsLHY could fine-tune the CDL by directly regulating OsGI, and Hd1 acts as the final effector of CDL downstream of OsLHY. Our study illustrates a new regulatory mechanism between the circadian clock and photoperiodic flowering.


Assuntos
Oryza , Fotoperíodo , Ritmo Circadiano/genética , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...