Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Front Oncol ; 13: 1284405, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38406173

RESUMO

More and more accelerator-based boron neutron capture therapy (AB-BNCT) facilities are under the construction or commissioning stage, and the neutron beam characteristic measurements at each facility will start soon. In addition to the in-field neutron beam properties, the leakage of neutron beam is also important, which is related to the side effects of the patient. In the Virtual Technical Meeting on Advances in Boron Neutron Capture Therapy held by International Atomic Energy Agency (IAEA) in July 2020, the issue of the out-of-field leakage in BNCT was addressed. Heron Neutron Medical Corporation has been working on the beam design for China Medical University Hsinchu Hospital AB-BNCT research center. To evaluate the out-of-field leakage, both beam profile analysis and whole-body dose calculation are performed. An Oak Ridge National Laboratory (ORNL) Medical Internal Radiation Dose (MIRD) mathematical phantom is used to calculate the whole-body dose. For the estimated irradiation time which is set to be the time required for 80% of tumor dose to reach 20 Gy-w, the relative biological effectiveness weighted dose of abdomen region is less than 40 mGy-w and the whole-body dose is 104 mSv. The beam profile calculational result shows that the neutron ambient dose equivalent at 15 cm from the field edge is 11 mSv/Gy-w and drops to 5 mSv/Gy-w at 26 cm from the field edge. The gamma ray ambient dose equivalent is less than 1 mSv/Gy-w starting from 10 cm from the field edge. Although the neutron out-of-field leakage of the beam design is higher than that of the initially proposed guideline by IAEA in 2020, the whole-body dose, however, is reasonably low. Both the whole-body dose evaluation and the beam profile analysis are useful in the beam design consideration. The whole-body dose calculation together with the beam profile analysis can also be helpful in reaching an acceptable recommendation for the out-of-field leakage for BNCT neutron beam, a job wished to be accomplished in the near future as proposed in the 2023 IAEA's report on Advances in Boron Neutron Capture Therapy.

2.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-254610

RESUMO

<p><b>AIM</b>To study the correlation between 5-HT-induced pain response and the contribution by individual 5-HTR subtypes including 5-HT1R, 5-HT2R and 5-HT3R at the level of peripheral primary afferent.</p><p><b>METHODS</b>The experiments were done on acutely isolated trigeminal ganglion (TG) neurons using whole-cell patch clamp technique and the nociceptive effect was observed on behavior experiments by intraplantar injection of test drugs.</p><p><b>RESULTS</b>The majority of cells examined responded to 5-HT in a manner of concentration dependence (10(-6) - 10(-3) mol/) (61.4%, 54/88) and with a fast activating and rapid desensitizing inward current (I(5-HT)), which was thought to be mediated by the activation of 5-HT3R, since it could be blocked by 5-HT3R antagonist ICS 205930 and mimicked by 5-HT3R agonist 2-methyl-5-HT. It was found that I(5-HT) was potentiated by 5-HT2R agonist alpha-methyl-5-HT markedly, while 5-HT1R agonist R-(+)-UH 301 did not. In behavioral experiment performed on conscious rats, intraplantar injection of 5-HT(10(-5), 10(-4) and 10(-3) mol/L) induced an increment of cumulative lifting time first 20 min in a manner of concentration dependence. By dissociating 5-HTR subtypes using their corresponding antagonists (ICS and CYP) the potency order of hindpaw lifting time was identified as follows: 5-HT > 5-HT + ICS > 5-HT + CYP.</p><p><b>CONCLUSION</b>The results suggest that in 5-HT-induced nociceptive response at the primary sensory level 5-HT3R may play a role of initiation, but 5-HT2R mediates maintaining and modulatory effect in the processes of nociceptive information convey.</p>


Assuntos
Animais , Masculino , Ratos , Potenciais da Membrana , Dor , Técnicas de Patch-Clamp , Ratos Sprague-Dawley , Receptores 5-HT1 de Serotonina , Metabolismo , Receptores 5-HT2 de Serotonina , Metabolismo , Receptores 5-HT3 de Serotonina , Metabolismo , Células Receptoras Sensoriais , Metabolismo , Fisiologia
3.
Acta Physiologica Sinica ; (6): 703-707, 2004.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-352711

RESUMO

The modulation by substance P of gamma-aminobutyric acid (GABA)- and 5-hydroxytryptamine (5-HT)-activated currents (I(GABA) and I(5-HT)) was studied by using patch-clamp technique in rat trigeminal ganglion (TG) neurons. The majority of neurons examined responded to GABA and 5-HT with inward currents in the same cells (63.8%, 30/47). In 22 out of 30 neurons sensitive to both GABA and 5-HT, pretreatment with substance P (SP, 0.01 micromol/L) suppressed I(GABA) by (35.7 +/-6.1)% and enhanced I(5-HT) by (65.2 +/- 8.7)%. GR 82334, a potent and specific antagonist of NK1 tachykinin receptor, reversibly blocked the modulatory effects of SP. The SP modulation on I(GABA) and I(5-HT) was also abolished by intracellular dialysis of GDP-beta-S, a non-hydrolyzable GDP analog, or GF 109203X, a selective protein kinase C inhibitor. These results suggest that SP exerts opposite modulatory actions on GABA(A) receptor and 5-HT3 receptor activity of the same primary sensory neuron via the same intracellular signal transduction pathway.


Assuntos
Animais , Ratos , Animais Recém-Nascidos , Antagonistas GABAérgicos , Farmacologia , Neurônios Aferentes , Fisiologia , Técnicas de Patch-Clamp , Ratos Sprague-Dawley , Serotonina , Fisiologia , Antagonistas da Serotonina , Farmacologia , Substância P , Farmacologia , Fisiologia , Gânglio Trigeminal , Fisiologia , Ácido gama-Aminobutírico , Fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...