Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Sci Rep ; 14(1): 22962, 2024 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-39362926

RESUMO

Snake venom C-type lectin-like proteins (CLPs) belong to the nonenzymatic proteins. To date, no CLP with both platelet and coagulation factors activating activities has been reported. In this study, a novel CLP, termed protocetin, with molecular weight of 29.986 kDa, was purified from the Protobothrops mucrosquamatus venom (PMV). It consists of α- and ß-chains, with 67% similarity in their N-terminal sequence. Protocetin activates glycoprotein Ib (GPIb) by binding to von Willebrand factor (vWF), inducing platelet aggregation. It also activates the intrinsic coagulation pathway by binding to coagulation factor IX. After injection of protocetin into mice at dose of 0.5 µg/g or 1.5 µg/g, it resulted in activation of platelets, a notable reduction in platelet count and prolonged tail bleeding time. Additionally, the plasma activated partial thromboplastin time (APTT) was significantly extended, and the fibrinogen concentration was markedly reduced. Thrombelastogram comfirmed the anticoagulation effect of protocetin. Notably, no microthrombosis was observed in tissues of lung, liver and kidney within 1 h after injection of protocetin into the mice at dose of 0.5 µg/g. This study revealed protocetin as a novel CLP from PMV that has dual functions in activating platelet and coagulation factor IX, thereby modulates coagulation in vivo. This work contributes to a better understanding of the structure and function of snake venom CLP.


Assuntos
Coagulação Sanguínea , Fator IX , Lectinas Tipo C , Agregação Plaquetária , Venenos de Serpentes , Fator de von Willebrand , Animais , Fator de von Willebrand/metabolismo , Coagulação Sanguínea/efeitos dos fármacos , Camundongos , Lectinas Tipo C/metabolismo , Fator IX/farmacologia , Fator IX/metabolismo , Venenos de Serpentes/farmacologia , Venenos de Serpentes/química , Agregação Plaquetária/efeitos dos fármacos , Humanos , Masculino
2.
Foods ; 13(17)2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39272597

RESUMO

As a protein extracted from soybeans, soy protein isolate (SPI) may undergo the Maillard reaction (MR) with co-existing saccharides during the processing of soy-containing foods, potentially altering its structural and functional properties. This work aimed to investigate the effect of mono- and polysaccharides on the structure and functional properties of SPI during MR. The study found that compared to oat ß-glucan, the reaction rate between SPI and D-galactose was faster, leading to a higher degree of glycosylation in the SPI-galactose conjugate. D-galactose and oat ß-glucan showed different influences on the secondary structure of SPI and the microenvironment of its hydrophobic amino acids. These structural variations subsequently impact a variety of the properties of the SPI conjugates. The SPI-galactose conjugate exhibited superior solubility, surface hydrophobicity, and viscosity. Meanwhile, the SPI-galactose conjugate possessed better emulsifying stability, capability to produce foam, and stability of foam than the SPI-ß-glucan conjugate. Interestingly, the SPI-ß-glucan conjugate, despite its lower viscosity, showed stronger hypoglycemic activity, potentially due to the inherent activity of oat ß-glucan. The SPI-galactose conjugate exhibited superior antioxidant properties due to its higher content of hydroxyl groups on its molecules. These results showed that the type of saccharides had significant influences on the SPI during MR.

3.
BMC Complement Med Ther ; 24(1): 334, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39272057

RESUMO

INTRODUCTION: Acute lung injury (ALI) as one kind of acute pulmonary inflammatory disorder, manifests primarily as damage to alveolar epithelial cells and microvascular endothelial cells. Activation of the complement system is a common pathological mechanism in ALI induced by diverse factors, with the complement alternative pathway assuming a pivotal role. Baicalin, a flavonoid derived from the root of Scutellaria baicalensis Georgi, exhibits noteworthy biological activities. The present study attempted the interventional effects and underlying mechanisms of baicalin in microangiopathy in ALI induced by complement alternative pathway activation. METHODS: Activation of the complement alternative pathway by cobra venom factor (CVF). HMEC cells were pretreated with baicalin and then exposed to complement activation products. The expression of inflammatory mediators was detected by ELISA, and the intranuclear transcriptional activity of NF-κB was assessed by a dual fluorescent kinase reporter gene assay kit. Before establishing the ALI mouse model, baicalin or PDTC was gavaged for 7 d. CVF was injected into the tail vein to establish the ALI model. The levels of inflammatory mediators in BALF and serum were determined by ELISA. HE staining and immunohistochemistry evaluated pathological changes, complement activation product deposition, and NF-κB p65 phosphorylation in lung tissue. RESULTS: Baicalin reduced complement alternative activation product-induced expression of HMEC cells adhesion molecules (ICAM-1, VCAM-1, E-selectin) and cytokines (IL-6, TNF-α) as well as upregulation of NF-κB intranuclear transcriptional activity. Baicalin intervention reduced the number of inflammatory cells and protein content in the BALF and decreased the levels of IL-6, TNF-α, and ICAM-1 in serum and IL-6, TNF-α, ICAM-1, and P-selectin in BLAF. In addition, baicalin attenuated inflammatory cell infiltration in the lung of ALI mice and reduced the deposition of complement activation products (C5a, C5b-9) and phosphorylation of NF-κB p65 in lung tissue. CONCLUSION: Baicalin relieves complement alternative pathway activation-induced lung inflammation by inhibition of NF-κB pathway, delaying the progression of ALI.


Assuntos
Lesão Pulmonar Aguda , Flavonoides , NF-kappa B , Animais , Flavonoides/farmacologia , Camundongos , NF-kappa B/metabolismo , Lesão Pulmonar Aguda/tratamento farmacológico , Humanos , Modelos Animais de Doenças , Masculino , Via Alternativa do Complemento/efeitos dos fármacos , Pneumonia/tratamento farmacológico , Camundongos Endogâmicos C57BL , Pulmão/efeitos dos fármacos , Venenos Elapídicos/farmacologia
5.
Heliyon ; 10(10): e30969, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38813202

RESUMO

Snake venoms, comprising a complex array of protein-rich components, an important part of which are snake venom metalloproteinases (SVMPs). These SVMPs, which are predominantly isolated from viperid venoms, are integral to the pathology of snakebites. However, SVMPs derived from elapid venoms have not been extensively explored, and only a handful of SVMPs have been characterized to date. Atrase A, a nonhemorrhagic P-III class metalloproteinase from Naja atra venom, exhibits weak proteolytic activity against fibrinogen in vitro but has pronounced anticoagulant effects in vivo. This contrast spurred investigations into its anticoagulant mechanisms. Research findings indicate that atrase A notably extends the activated partial thromboplastin time, diminishes fibrinogen levels, and impedes platelet aggregation. The anticoagulant action of atrase A primarily involves inhibiting coagulation factor VIII and activating the endogenous fibrinolytic system, which in turn lowers fibrinogen levels. Additionally, its effect on platelet aggregation further contributes to its anticoagulant profile. This study unveils a novel anticoagulant mechanism of atrase A, significantly enriching the understanding of the roles of cobra venom metalloproteinases in snake venom. Furthermore, these findings underscore the potential of atrase A as a novel anticoagulant drug, offering insights into the functional evolutions of cobra venom metalloproteinases.

6.
Int Immunopharmacol ; 131: 111802, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38467082

RESUMO

Acute lung injury (ALI) is an acute respiratory-related progressive disorder, which lacks specific pharmacotherapy. Icariin (ICA) has been shown to be effective in treating ALI. However, the targets and pharmacological mechanisms underlying the effects of ICA in the treatment of ALI are relatively lacking. Based on network pharmacology and molecular docking analyses, the gene functions and potential target pathways of ICA in the treatment of ALI were determined. In addition, the underlying mechanisms of ICA were verified by immunohistochemistry, immunofluorescence, quantitative Real-time PCR, and Western blot in LPS-induced ALI mice. The biological processes targeted by ICA in the treatment of ALI included the pathological changes, inflammatory response, and cell signal transduction. Network pharmacology, molecular docking, and in vivo experimental results revealed that ICA inhibited the complement C5a-C5aR1 axis, TLR4 mediated NF-κB, MAPK, and JAK2-STAT3 signaling pathways related gene and protein expressions, and decreased inflammatory cytokine, chemokine, adhesion molecule expressions, and mitochondrial apoptosis in LPS-induced ALI.


Assuntos
Lesão Pulmonar Aguda , Complemento C5a , Flavonoides , Lipopolissacarídeos , Receptores de Complemento , Animais , Camundongos , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Complemento C5a/metabolismo , Flavonoides/uso terapêutico , Lipopolissacarídeos/farmacologia , Pulmão/patologia , Simulação de Acoplamento Molecular , NF-kappa B/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Receptores de Complemento/metabolismo
7.
Sci Total Environ ; 904: 166781, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37666341

RESUMO

The impacts of water chemistry properties including pH and dissolved organic carbon (DOC) on the ecotoxicity of active pharmaceutical ingredients (APIs) are increasingly evident. These impacts are a result of alterations in API bioavailability: pH regulates the bioavailability of many ionizable APIs via chemical speciation, whereas DOC interacts with several APIs to inhibit the APIs from traversing the membrane system of organisms. In this study, we examined the influences of pH and DOC on the bioavailability of ampicillin (AMP) and clarithromycin (CLA) with the help of a bioavailability model. The effects on bioavailability were quantified by ecotoxicity observed in cyanobacteria growth inhibition tests with Microcystis aeruginosa PCC7806. The median effect concentration (96 h-EC50total) of AMP increased by 5-fold when pH raised from 7.4 to 9.0, suggesting the zwitterionic AMP+/- species being higher in bioavailability than the negatively charged AMP- species. CLA ecotoxicity showed no significant pH-dependency, suggesting CLA+ and CLA0 species to be equally bioavailable, albeit it correlated significantly with M. aeruginosa growth rate in negative controls. In addition, DOC demonstrated no significant effects on the ecotoxicity of AMP or CLA. Overall, together with earlier results on ciprofloxacin, our data show that bioavailability relations with pH and DOC are variable among different antibiotics. Factors other than chemical speciation alone could play a role in their bioavailability, such as their molecular size and polarity.


Assuntos
Claritromicina , Poluentes Químicos da Água , Claritromicina/toxicidade , Matéria Orgânica Dissolvida , Poluentes Químicos da Água/análise , Concentração de Íons de Hidrogênio , Ampicilina/toxicidade , Carbono/química
8.
Plant Foods Hum Nutr ; 78(3): 552-556, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37594557

RESUMO

Maillard reaction (MR) with oat ß-glucan changed the structure of soybean protein isolate (SPI), further leading to the enhancement of its functional properties. SPI was unfolded by MR, and the SPI conjugates with high molecular weight were identified. The water solubility of SPI was improved by cross-linking with hydrophilic ß-glucan, while the hydrophobicity also increased along with the unfolding of the SPI. Cross-linking with ß-glucan elevated the viscosity of SPI, thus enhancing viscosity-related physiological activities, including bile acid binding ability, fat binding capacity, and hypoglycemic activity, and the functional properties increased as the ßG content involved in MR increased.


Assuntos
Reação de Maillard , beta-Glucanas , Proteínas de Soja , Hipoglicemiantes
9.
Environ Pollut ; 334: 122209, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37454719

RESUMO

Dissolved organic carbon (DOC) is a powerful regulator of the ecotoxicity of ciprofloxacin (CIP), a widely applied fluoroquinolone antibiotic. In this study, we investigated the impact of DOC from a variety of sources on CIP bioavailability, using a cyanobacteria growth inhibition test with Microcystis aeruginosa. We analyzed the impact from two perspectives: (1) DOC concentration, and (2) water brownness, defined in this work as the light absorbance of DOC solutions. The toxicity tests were conducted with (1) unprocessed freshwater DOC in the naturally occurring state, (2) DOC extracted from a freshwater stream (Schwarzbach stream, Küchelscheid, Belgium), and (3) the commercial DOC product Suwannee River organic matter. Across all DOC sources investigated, a strong negative correlation was observed between CIP ecotoxicity and light absorbance at four wavelengths across the ultraviolet-visible range (e.g., A350), whereas CIP ecotoxicity correlated poorly with the DOC concentration. In addition, the interactions between CIP and DOC were modelled as a CIP-DOC binding process to allow the quantification of the inhibitory effects of DOC on CIP toxicity via binding constants (Kd,CIPx, with x being the ionic charge + or +/-, L g-1). Processed DOC sources showed higher binding potency than most of the unprocessed DOC sources, suggesting that toxicity tests employing only processed DOC potentially overestimates the impact of DOC in natural environments. Nonetheless, the light absorption coefficient (i.e., ε350) appeared a reliable predictor of the Kd,CIP+/- (and thus of the potential of the DOC source to reduce ecotoxicity of CIP) of both processed and unprocessed DOC. The relationship can be further incorporated into model simulations to estimate CIP bioavailability in dynamic environments. It is concluded that the brownness of water is a better predictor of the impact of DOC on CIP bioavailability than the DOC concentration itself.


Assuntos
Poluentes Químicos da Água , Água , Ciprofloxacina/toxicidade , Disponibilidade Biológica , Poluentes Químicos da Água/análise , Rios , Antibacterianos , Carbono
10.
J Sci Food Agric ; 103(14): 7040-7049, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37318938

RESUMO

BACKGROUND: Soy protein isolate (SPI) is widely used in the food industry because of its nutritional and functional properties. During food processing and storage, the interaction with co-existing sugars can cause changes in the structural and functional properties of SPI. In this study, SPI-l-arabinose conjugate (SPI:Ara) and SPI-d-galactose conjugate (SPI:Gal) were prepared using Maillard reaction (MR), and the effects of five-carbon/six-carbon sugars on the structural information and function of SPI were compared. RESULTS: MR unfolded and stretched the SPI, changing its ordered conformation into disorder. Lysine and arginine of SPI were bonded with the carbonyl group of sugar. The MR between SPI and l-arabinose has a higher degree of glycosylation compared to d-galactose. MR of SPI enhanced its solubility, emulsifying property and foaming property. Compared with SPI:Ara, SPI:Gal exhibited better aforementioned properties. The functionalities of amphiphilic SPI were enhanced by MR, SPI:Gal possessed better hypoglycemic effect, fat binding capacity and bile acid binding ability than SPI:Ara. MR endowed SPI with enhanced biological activities, SPI:Ara showed higher antioxidant activities, and SPI:Gal exhibited stronger antibacterial activities. CONCLUSION: Our work revealed that l-arabinose/d-galactose exhibited different effects on the structural information of SPI, and further affected its physicochemical and functional property. © 2023 Society of Chemical Industry.


Assuntos
Galactose , Proteínas de Soja , Proteínas de Soja/química , Arabinose , Reação de Maillard , Carbono , Produtos Finais de Glicação Avançada
11.
BMC Complement Med Ther ; 22(1): 245, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36127691

RESUMO

INTRODUCTION: Disseminated intravascular coagulation (DIC) is a syndrome characterized by coagulopathy, microthrombus, and multiple organ failure. The complement system in DIC is overactivated, and the functions of complement and coagulation pathways are closely related. Our previous screening revealed that salvianolic acid A (SAA) has anti-complement activity. The hyper-activated complement system was involved in the lipopolysaccharide (LPS) induced DIC in rats. The effects of SAA anti-complement action on LPS-induced DIC in rats were investigated. METHODS: The complement activity of the classical pathway and alternative pathway was detected through an in vitro hemolysis assay. The binding sites of SAA and complement C3b were predicted by molecular docking. LPS-induced disseminated coagulation experiments were performed on male Wistar rats to assess coagulation function, complement activity, inflammation, biochemistry, blood routine, fibrinolysis, and survival. RESULTS: SAA had an anti-complement activity in vivo and in vitro and inhibited the complement activation in the classical and alternative pathway of complement. The infusion of LPS into the rats impaired the coagulation function, increased the plasma inflammatory cytokine level, complemented activation, reduced the clotting factor levels, fibrinogen, and platelets, damaged renal, liver, and lung functions, and led to a high mortality rate (85%). SAA treatment of rats inhibited complement activation and attenuated the significant increase in D-dimer, interleukin-6, alanine aminotransferase, and creatinine. It ameliorated the decrease in plasma levels of fibrinogen and platelets and reversed the decline in activity of protein C and antithrombin III. The treatment reduced kidney, liver, and lung damage, and significantly improved the survival rate of rats (46.2 and 78.6% for the low- and high-dose groups, respectively). CONCLUSION: SAA reduced LPS-induced DIC by inhibiting complement activation. It has considerable potential in DIC treatment.


Assuntos
Ácidos Cafeicos , Ativação do Complemento , Coagulação Intravascular Disseminada , Lactatos , Alanina Transaminase , Animais , Antitrombina III/metabolismo , Fatores de Coagulação Sanguínea/metabolismo , Ácidos Cafeicos/farmacologia , Complemento C3b , Creatinina , Coagulação Intravascular Disseminada/induzido quimicamente , Coagulação Intravascular Disseminada/tratamento farmacológico , Fibrinogênio/metabolismo , Interleucina-6 , Lactatos/farmacologia , Lipopolissacarídeos , Masculino , Simulação de Acoplamento Molecular , Proteína C/metabolismo , Ratos , Ratos Wistar
12.
Environ Toxicol Chem ; 41(11): 2835-2847, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35920341

RESUMO

Ciprofloxacin (CIP) is a pseudopersistent antibiotic detected in freshwater worldwide. As an ionizable chemical, its fate in freshwater is influenced by water chemistry factors such as pH, hardness, and dissolved organic carbon (DOC) content. We investigated the effect of pH, DOC, and Ca2+ levels on the toxicity of CIP to Microcystis aeruginosa and developed a bioavailability model on the basis of these experimental results. We found that the zwitterion (CIP+/- ) is the most bioavailable species of CIP to M. aeruginosa, whereas DOC is the most dominant factor reducing CIP toxicity, possibly via binding of both CIP+/- and CIP+ to DOC. pH likely also regulates CIP-DOC binding indirectly through its influence on CIP speciation. In addition, higher tolerance to CIP by M. aeruginosa was observed at pH < 7.2, but the underlying mechanism is yet unclear. Calcium was identified as an insignificant factor in CIP bioavailability. When parameterized with the data obtained from toxicity experiments, our bioavailability model is able to provide accurate predictions of CIP toxicity because the observed and predicted total median effective concentrations deviated by <28% from each other. Our model predicts that changes in pH and DOC conditions can affect CIP toxicity by up to 10-fold, suggesting that CIP in many natural environments is likely less toxic than in standard laboratory toxicity experiments. Environ Toxicol Chem 2022;41:2835-2847. © 2022 SETAC.


Assuntos
Microcystis , Poluentes Químicos da Água , Microcystis/metabolismo , Ciprofloxacina/toxicidade , Matéria Orgânica Dissolvida , Disponibilidade Biológica , Cálcio/metabolismo , Poluentes Químicos da Água/análise , Água , Concentração de Íons de Hidrogênio , Antibacterianos/toxicidade , Carbono/química
13.
Artigo em Inglês | MEDLINE | ID: mdl-35615685

RESUMO

Constitution refers to the comprehensive and relatively stable characteristics of the genetic or acquired morphological structure, physiological function, and psychological state in the process of human individual life. A special metabolomics data processing method is established to find the unique m/z value of each constitution. Combined with the random forest decision tree algorithm, the discrimination model of 9 constitutions in traditional Chinese medicine is constructed, and the model is verified and tested. The test results show that the classification accuracy of each constitution is higher than 80%, indicating that the model can well identify nine constitutions of traditional Chinese medicine. The classification accuracy is related to the difficulty of distinguishing between constitutions. In a word, this study provides a fast and accurate method to distinguish the constitution of traditional Chinese medicine, provides an objective representation for the classification and judgment of clinical constitution of traditional Chinese medicine, and provides a scientific basis for the modernization of traditional Chinese medicine.

14.
Molecules ; 27(4)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35209020

RESUMO

Puerarin (PUR) and gastrodin (GAS) are often used in combined way for treating diseases caused by microcirculation disorders. The current study aimed to investigate the absorption and transportation mechanism of PUR and GAS and their interaction via Caco-2 monolayer cell model. In this work, the concentration in Caco-2 cell of PUR and GAS was determined by HPLC method. The bidirectional transport of PUR and GAS and the inhibition of drug efflux including verapamil and cyclosporine on the transport of these two components were studied. The mutual influence between PUR and GAS, especially the effect of the latter on the former of the bidirectional transport were also investigated. The transport of 50 µg·mL-1 PUR in Caco-2 cells has no obvious directionality. While the transport of 100 and 200 µg·mL-1 PUR presents a strong directionality, and this directionality can be inhibited by verapamil and cyclosporine. When PUR and GAS were used in combination, GAS could increase the absorption of PUR while PUR had no obvious influence on GAS. Therefore, the compatibility of PUR and GAS is reasonable, and GAS can promote the transmembrane transport of PUR, the effect of which is similar to that of verapamil.


Assuntos
Álcoois Benzílicos/metabolismo , Glucosídeos/metabolismo , Absorção Intestinal , Isoflavonas/metabolismo , Álcoois Benzílicos/química , Álcoois Benzílicos/farmacocinética , Transporte Biológico , Células CACO-2 , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Relação Dose-Resposta a Droga , Glucosídeos/química , Glucosídeos/farmacocinética , Humanos , Isoflavonas/química , Isoflavonas/farmacocinética , Cinética , Estrutura Molecular , Permeabilidade , Reprodutibilidade dos Testes
15.
Artigo em Inglês | MEDLINE | ID: mdl-34194524

RESUMO

Gegen Qinlian decoction (GGQLD) has a definite effect on T2DM in clinic, and it has the effect of lowering blood sugar, improving insulin resistance, and improving the blood lipid level of rats with dyslipidemia, but the intervention mechanism of GGQLD on dyslipidemia has not been clarified. The changes in endogenous metabolites in the plasma of high-fat diet-induced dyslipidemia rats treated with Ge Gen Qin Lian Decoction (GGQLD) were studied to elucidate the therapeutic effects and mechanism of action of GGQLD in dyslipidemia. Based on ultrahigh-performance liquid chromatography coupled with quadrupole-time-of-flight tandem mass spectrometry (UHPLC-Q-TOF-MS), the metabolic profiles of rat serum samples were collected. The rat model of dyslipidemia was induced by a 60% fat-fed high-fat diet. After feeding the rats with a high-fat diet for 4 weeks, dyslipidemia appeared. After 5 weeks of GGQLD (14.85 g kg-1) administration, the metabonomics of rats' plasma samples in the normal group, model group, and administration group were analyzed. Mass profiler professional (MPP), SIMCA-P 14.1, and Graphpad prism 6.0 software were used combined with METLIN biological database and human metabolite database HMDB to screen and identify endogenous biomarkers. Metaboanalyst 4.0 software was used by combining with HMDB and KEGG databases; the enrichment and metabolic pathway of biomarkers were analyzed to explore the metabolic mechanism of dyslipidemia rats induced by high-fat diet and the intervention mechanism of Gegen Qinlian decoction. After 5 weeks of administration of GGQLD, the levels of serum TC and TG were significantly decreased (P < 0.05, P < 0.01), while HDL-C and LDL-C were not significantly affected. After administration, the food intake of rats in the administration group decreased gradually, and the change trend of body weight gradually slowed down. The metabonomics of rat plasma samples results showed that 23 potential biomarkers including α-linolenic acid, arachidonic acid, and lysophosphatidylcholine were significantly changed in positive ion mode. Studies have shown that GGQLD has a significant lipid-lowering effect on dyslipidemia rats induced by a high-fat diet, and its preventive mechanism is related to tryptophan metabolism, fatty acid biosynthesis, α-linolenic acid metabolism, arachidonic acid, and glycerophosphatidyl metabolism pathway.

16.
Front Pharmacol ; 12: 654699, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33967798

RESUMO

Herbal teas or herbal drinks are traditional beverages that are prevalent in many cultures around the world. In Traditional Chinese Medicine, an herbal drink infused with different types of medicinal plants is believed to reduce the 'Shang Huo', or excessive body heat, a status of sub-optimal health. Although it is widely accepted and has a very large market, the underlying science for herbal drinks remains elusive. By studying a group of herbs for drinks, including 'Gan' (Glycyrrhiza uralensis Fisch. Ex DC.), 'Ju' (Dendranthema morifolium (Ramat.) Tzvelev), 'Bu' (Microcos paniculata L.), 'Jin' (Lonicera japonica Thunb.), 'Xia' (Prunella vulgaris L.), and 'Ji' (Plumeria rubra L.), the long-term jargon is connected with the inflammation of modern immunology through a few pro-inflammatory markers. In vitro studies have indicated that cellular inflammation is lowered by Ju and Jin either individually or synergistically with Gan. Among all herbs, only Gan detoxicated cellular toxicity of Bu in a dose dependent manner. The synergistic formulation of Ju and Gan, or Jin and Gan, in a reduction of Shang Huo, was tested in vivo. Both combinations exhibited a lower percentage of neutrophils, monocytes, and CD4+/CD8+ ratio in the blood, as well as inflammatory cytokines. Furthermore, body weight in the combinatory groups was more stable than treatments using single herbs. The combination of old traditional oriental methods with Western science logistics, has resulted in the formulation of different herbs into one concoction for the use of detoxification and synergism.

17.
Environ Res ; 195: 110698, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33482221

RESUMO

This study developed a facile approach for the fabrication of dual MgO-loaded carbon foam (DMCF) via carbonization of a cured MgO/cyanate ester resin mixture, which underwent self-foaming of the resin followed by the carbothermal reduction of MgO. The features of the prepared DMCF prepared were characterized by FESEM, TEM, XRD, FTIR, XPS and so on, and the effects of adsorption conditions, adsorption isotherms, kinetics, and thermodynamics on malachite green (MG) removal using the DMCF as adsorbents were investigated through batch adsorption experiments. Results demonstrate that the DMCF possesses a unique dual loading of MgO particles which are not only loaded onto its foam walls but also filled within the walls with a graphene-wrapped core-shell structure. The experimental maximum adsorption capacity of MG reaches up to 1874.18 mg/g with a partition coefficient of 10.87 mg/g/µM. The adsorption process can be better described with Langmuir, pseudo-second-order, and intraparticle diffusion models. Moreover, the DMCF exhibits a removal percentage of 84.85% after five reuses, indicating that it is an efficient and promising adsorbent for MG adsorption.


Assuntos
Carbono , Poluentes Químicos da Água , Adsorção , Cinética , Óxido de Magnésio , Corantes de Rosanilina
18.
Artigo em Inglês | MEDLINE | ID: mdl-35003297

RESUMO

Shenling Baizhu San, a traditional formula, has a long history of treating spleen asthenic diarrhea by invigorating the spleen and dispelling dampness in China. A rapid and accurate UHPLC-MS/MS method was developed and fully validated for the simultaneous determination of ten active constituents in rat plasma: panaxadiol, ginsenoside Rg1, atractylenolide I, atractylenolide III, pachymic acid, neferine, nuciferine, diosgenin, platycodin D, and isoliquiritigenin. The plasma samples were pretreated by the protein precipitation method with acetonitrile. The analytes and puerarin (internal standard) were determined with high selectivity and sensitivity (LLOQ, 0.31-0.68 ng·mL-1) within 10 minutes. The validation parameters, including intra-/interday precisions, accuracy, recovery, matrix effect, and stability, were within acceptable ranges. The validated method was successfully applied to the pharmacokinetics study of ten components in normal and two rat models of ulcerative colitis (i.e., spleen deficiency with dampness retention-ulcerative colitis (SDDR-UC) rats and pure-ulcerative colitis (P-UC) rats). The pharmacokinetic parameters were significantly different among the three groups of rats. Overall, the absorption of the components was shown as follows: normal group > SDDR-UC group > P-UC group. The study could provide a scientific basis for further studies on pharmacokinetics and clinical differential application of SDDR-UC and P-UC patients.

19.
Environ Res ; 188: 109698, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32504849

RESUMO

A stiff zinc oxide/carbon foam (ZnO/CF) composite as a desirable adsorbent for heavy metal ions was innovatively designed and fabricated by loading ZnO particles into a carbon foam with capsule-like second-level macropores. The features of the resulting composite were characterized by FESEM, XRD, BET, FTIR, and XPS. The effects of adsorption parameters on the Pb(II), Cr(III), and Cu(II) ions removal were studied through batch experiments. Results show that the ZnO/CF composite possesses a second-level macroporous structure filled ZnO particles, which has both mesoporous structure and Zn-O-C bond with the strongly synergistic effect. And meanwhile, it has a relatively high compression strength of 2.18 MPa at a density of 0.18 g cm-3. The experimental maximum adsorption capacities for Pb(II), Cr(III), and Cu(II) ions reach 170.85 mg g-1, 168.74 mg g-1, and 104.61 mg g-1 with relatively high partition coefficients of 5.803 mg g-1 µM-1, 1.169 mg g-1 µM-1, and 0.648 mg g-1 µM-1, respectively. The experimental data are in accordance with Langmuir isotherm and pseudo-second-order kinetic model. Moreover, the composite still exhibits a good adsorption performance even after five cycles.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Óxido de Zinco , Adsorção , Carbono , Íons , Cinética , Poluentes Químicos da Água/análise
20.
Environ Res ; 179(Pt A): 108746, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31586862

RESUMO

A novel hierarchical stiff carbon foam (HSCF) was successfully prepared via a carbothermal reduction between the carbon foam with two-level pore structure and the Al2O3 from aluminum sulfate, and used as a bulk adsorbent for removing malachite green (MG) dye. The structures of the HSCF were characterized using SEM, XRD, FTIR, BET, and XPS, and the effects of adsorption condition on the MG removal were studied through batch adsorption experiments. Results show that large-sized and complex-shaped HSCF can be easily fabricated with a high compression strength of 1.58 MPa at a low bulk density (0.10 g cm-3). The HSCF possesses a fluffy graphene-like nanosheet surface with a mesoporous structure and meanwhile exhibits good hydrophilicity loaded with aluminum hydroxide. The experimental maximum adsorption capacity for MG reaches 425.2 mg g-1 with a relatively high partition coefficient of 9.38 mg g-1 µM-1 at the optimal condition. The experimental data are in good agreement with Langmuir isotherm and pseudo-second-order kinetic model, and meanwhile, the adsorption of MG onto the HSCF is a spontaneous and endothermic process. Also, the HSCF still exhibits good adsorption ability and stability after seven regeneration cycles.


Assuntos
Grafite , Corantes de Rosanilina/química , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Poluentes Químicos da Água/química , Adsorção , Carbono , Cinética , Nanoestruturas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA