RESUMO
Since their discovery in 1981, the cardiac natriuretic peptides (cNP) atrial natriuretic peptide (also referred to as atrial natriuretic factor) and brain natriuretic peptide have been well characterised in terms of their renal and cardiovascular actions. In addition, it has been shown that cNP plasma levels are strong predictors of cardiovascular events and mortality in populations with no apparent heart disease as well as in patients with established cardiac pathology. cNP secretion from the heart is increased by humoral and mechanical stimuli. The clinical significance of cNP plasma levels has been shown to differ in obese and non-obese subjects. Recent lines of evidence suggest important metabolic effects of the cNP system, which has been shown to activate lipolysis, enhance lipid oxidation and mitochondrial respiration. Clinically, these properties lead to browning of white adipose tissue and to increased muscular oxidative capacity. In human association studies in patients without heart disease higher cNP concentrations were observed in lean, insulin-sensitive subjects. Highly elevated cNP levels are generally observed in patients with systolic heart failure or high blood pressure, while obese and type-2 diabetics display reduced cNP levels. Together, these observations suggest that the cNP system plays a role in the pathophysiology of metabolic vascular disease. Understanding this role should help define novel principles in the treatment of cardiometabolic disease.
RESUMO
The endocrine heart produces the polypeptide hormones Atrial Natriuretic Factor (ANF or ANP) and Brain Natriuretic Peptide (BNP). Through the peripheral actions of these hormones the heart contributes to the regulation of the cardiac preload and afterload. More recently, new functions for these hormones have been described including the modulation of the immune response. Plasma levels of BNP but not those of ANF, increase following an acute rejection episode of a cardiac allotransplant but return to levels pre-rejection with successful treatment. This observation constitutes the first observation leading to characterizing the interactions of BNP with the immune response. Several other pathologies with an inflammatory component are now known to be associated with an increase in the production of BNP. Such an increase is due to an increase in the transcriptional activity of the BNP gene induced by cytokines and related substances. In vitro investigations have shown that an increase in BNP directly modulates immunological activity. Inflammation and hemodynamic changes co-exist in several cardiovascular diseases and therefore it may be beneficial to measure circulating levels of both ANF and BNP as biomarkers of changes in intravascular volume and of changes in intravascular volume plus inflammation, respectively. Changes in plasma ANF, that are relatively larger than those of BNP, might be an indication of hemodynamic deterioration while important changes in circulating BNP could indicate a worsening of the inflammatory process.
Assuntos
Fator Natriurético Atrial/metabolismo , Inflamação/metabolismo , Miócitos Cardíacos/metabolismo , Peptídeo Natriurético Encefálico/metabolismo , Animais , Fator Natriurético Atrial/imunologia , Pesquisa Biomédica , Hemodinâmica/imunologia , Humanos , Miocardite/imunologia , Miocardite/metabolismo , Peptídeo Natriurético Encefálico/genética , Peptídeo Natriurético Encefálico/imunologia , Sepse/imunologia , Sepse/metabolismoRESUMO
The endocrine heart produces the polypeptide hormones Atrial Natriuretic Factor (ANF or ANP) and Brain Natriuretic Peptide (BNP). Through the peripheral actions of these hormones the heart contributes to the regulation of the cardiac preload and afterload. More recently, new functions for these hormones have been described including the modulation of the immune response. Plasma levels of BNP but not those of ANF, increase following an acute rejection episode of a cardiac allotransplant but return to levels pre-rejection with successful treatment. This observation constitutes the first observation leading to characterizing the interactions of BNP with the immune response. Several other pathologies with an inflammatory component are now known to be associated with an increase in the production of BNP. Such an increase is due to an increase in the transcriptional activity of the BNP gene induced by cytokines and related substances. In vitro investigations have shown that an increase in BNP directly modulates immunological activity. Inflammation and hemodynamic changes co-exist in several cardiovascular diseases and therefore it may be beneficial to measure circulating levels of both ANF and BNP as biomarkers of changes in intravascular volume and of changes in intravascular volume plus inflammation, respectively. Changes in plasma ANF, that are relatively larger than those of BNP, might be an indication of hemodynamic deterioration while important changes in circulating BNP could indicate a worsening of the inflammatory process.
Assuntos
Fator Natriurético Atrial/metabolismo , Inflamação/metabolismo , Miócitos Cardíacos/metabolismo , Peptídeo Natriurético Encefálico/metabolismo , Animais , Fator Natriurético Atrial/imunologia , Hemodinâmica/imunologia , Humanos , Miocardite/imunologia , Miocardite/metabolismo , Peptídeo Natriurético Encefálico/genética , Peptídeo Natriurético Encefálico/imunologia , Pesquisa Biomédica , Sepse/imunologia , Sepse/metabolismoRESUMO
The endocrine heart produces the polypeptide hormones Atrial Natriuretic Factor (ANF or ANP) and Brain Natriuretic Peptide (BNP). Through the peripheral actions of these hormones the heart contributes to the regulation of the cardiac preload and afterload. More recently, new functions for these hormones have been described including the modulation of the immune response. Plasma levels of BNP but not those of ANF, increase following an acute rejection episode of a cardiac allotransplant but return to levels pre-rejection with successful treatment. This observation constitutes the first observation leading to characterizing the interactions of BNP with the immune response. Several other pathologies with an inflammatory component are now known to be associated with an increase in the production of BNP. Such an increase is due to an increase in the transcriptional activity of the BNP gene induced by cytokines and related substances. In vitro investigations have shown that an increase in BNP directly modulates immunological activity. Inflammation and hemodynamic changes co-exist in several cardiovascular diseases and therefore it may be beneficial to measure circulating levels of both ANF and BNP as biomarkers of changes in intravascular volume and of changes in intravascular volume plus inflammation, respectively. Changes in plasma ANF, that are relatively larger than those of BNP, might be an indication of hemodynamic deterioration while important changes in circulating BNP could indicate a worsening of the inflammatory process.