Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Trends Biotechnol ; 42(7): 807-809, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38158306

RESUMO

Drought-tolerant transgenic [genetically modified (GM)] HB4® wheat carrying the drought-responsive sunflower gene Hahb4 was first developed in Argentina in 2019 and has already been approved for marketing and consumption as food/feed in at least ten countries. It has also been approved in Argentina and Brazil for commercial cultivation.


Assuntos
Secas , Plantas Geneticamente Modificadas , Triticum , Plantas Geneticamente Modificadas/genética , Triticum/genética , Helianthus/genética , Brasil , Argentina
2.
Int J Mol Sci ; 24(21)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37958762

RESUMO

Cold stress poses significant limitations on the growth, latex yield, and ecological distribution of rubber trees (Hevea brasiliensis). The GSK3-like kinase plays a significant role in helping plants adapt to different biotic and abiotic stresses. However, the functions of GSK3-like kinase BR-INSENSITIVE 2 (BIN2) in Hevea brasiliensis remain elusive. Here, we identified HbBIN2s of Hevea brasiliensis and deciphered their roles in cold stress resistance. The transcript levels of HbBIN2s are upregulated by cold stress. In addition, HbBIN2s are present in both the nucleus and cytoplasm and have the ability to interact with the INDUCER OF CBF EXPRESSION1(HbICE1) transcription factor, a central component in cold signaling. HbBIN2 overexpression in Arabidopsis displays decreased tolerance to chilling stress with a lower survival rate and proline content but a higher level of electrolyte leakage (EL) and malondialdehyde (MDA) than wild type under cold stress. Meanwhile, HbBIN2 transgenic Arabidopsis treated with cold stress exhibits a significant increase in the accumulation of reactive oxygen species (ROS) and a decrease in the activity of antioxidant enzymes. Further investigation reveals that HbBIN2 inhibits the transcriptional activity of HbICE1, thereby attenuating the expression of C-REPEAT BINDING FACTOR (HbCBF1). Consistent with this, overexpression of HbBIN2 represses the expression of CBF pathway cold-regulated genes under cold stress. In conclusion, our findings indicate that HbBIN2 functions as a suppressor of cold stress resistance by modulating HbICE1 transcriptional activity and ROS homeostasis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Hevea , Hevea/genética , Hevea/metabolismo , Resposta ao Choque Frio/genética , Espécies Reativas de Oxigênio/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Homeostase , Proteínas Quinases/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
3.
Life (Basel) ; 13(5)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37240747

RESUMO

The challenging alterations in climate in the last decades have had direct and indirect influences on biotic and abiotic stresses that have led to devastating implications on agricultural crop production and food security. Extreme environmental conditions, such as abiotic stresses, offer great opportunities to study the influence of different microorganisms in plant development and agricultural productivity. The focus of this review is to highlight the mechanisms of plant growth-promoting microorganisms (especially bacteria and fungi) adapted to environmental induced stresses such as drought, salinity, heavy metals, flooding, extreme temperatures, and intense light. The present state of knowledge focuses on the potential, prospective, and biotechnological approaches of plant growth-promoting bacteria and fungi to improve plant nutrition, physio-biochemical attributes, and the fitness of plants under environmental stresses. The current review focuses on the importance of the microbial community in improving sustainable crop production under changing climatic scenarios.

4.
Plants (Basel) ; 12(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36679018

RESUMO

Agricultural crops are exposed to various abiotic stresses, such as salinity, water deficits, temperature extremes, floods, radiation, and metal toxicity. To overcome these challenges, breeding programs seek to improve methods and techniques. Gene editing by Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR/Cas-is a versatile tool for editing in all layers of the central dogma with focus on the development of cultivars of plants resistant or tolerant to multiple biotic or abiotic stresses. This systematic review (SR) brings new contributions to the study of the use of CRISPR/Cas in gene editing for tolerance to abiotic stress in plants. Articles deposited in different electronic databases, using a search string and predefined inclusion and exclusion criteria, were evaluated. This SR demonstrates that the CRISPR/Cas system has been applied to several plant species to promote tolerance to the main abiotic stresses. Among the most studied crops are rice and Arabidopsis thaliana, an important staple food for the population, and a model plant in genetics/biotechnology, respectively, and more recently tomato, whose number of studies has increased since 2021. Most studies were conducted in Asia, specifically in China. The Cas9 enzyme is used in most articles, and only Cas12a is used as an additional gene editing tool in plants. Ribonucleoproteins (RNPs) have emerged as a DNA-free strategy for genome editing without exogenous DNA. This SR also identifies several genes edited by CRISPR/Cas, and it also shows that plant responses to stress factors are mediated by many complex-signaling pathways. In addition, the quality of the articles included in this SR was validated by a risk of bias analysis. The information gathered in this SR helps to understand the current state of CRISPR/Cas in the editing of genes and noncoding sequences, which plays a key role in the regulation of various biological processes and the tolerance to multiple abiotic stresses, with potential for use in plant genetic improvement programs.

5.
Life (Basel) ; 13(1)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36676160

RESUMO

Extreme environmental conditions, such as abiotic stresses (drought, salinity, heat, chilling and intense light), offer great opportunities to study how different microorganisms and plant nutrition can influence plant growth and development. The intervention of biological agents such as plant growth-promoting rhizobacteria (PGPRs) coupled with proper plant nutrition can improve the agricultural importance of different plant species. Brassicaceae (Cruciferae) belongs to the monophyletic taxon and consists of around 338 genera and 3709 species worldwide. Brassicaceae is composed of several important species of economical, ornamental and food crops (vegetables, cooking oils, forage, condiments and industrial species). Sustainable production of Brassicas plants has been compromised over the years due to several abiotic stresses and the unbalanced utilization of chemical fertilizers and uncertified chemicals that ultimately affect the environment and human health. This chapter summarized the influence of PGPRs and nutrient management in the Brassicaceae family against abiotic stresses. The use of PGPRs contributed to combating climate-induced change/abiotic factors such as drought, soil and water salinization and heavy metal contamination that limits the general performance of plants. Brassica is widely utilized as an oil and vegetable crop and is harshly affected by abiotic stresses. Therefore, the use of PGPRs along with proper mineral nutrients management is a possible strategy to cope with abiotic stresses by improving biochemical, physiological and growth attributes and the production of brassica in an eco-friendly environment.

6.
Gesunde Pflanz ; : 1-14, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38625279

RESUMO

It is evident the increase in the occurrence of different stresses that impact agriculture and so there has been an increase in research to study stress mitigators including silicon (Si) and selenium (Se). However, the great challenge to be answered would be to assess whether it is possible to maximize these benefits by combining these two elements. Therefore, this review focused on discussing the feasibility of combining Se and Si in mitigating abiotic stresses and also measuring gains in yield and quality of agricultural products. These are the main challenges of plant mineral nutrition with these two elements for sustainable cultivation, ensuring food security with the possibility of improving human health. As the mode of application of an element can change absorption and assimilation processes and consequently the plant's response, it is important to consider research with supply of these elements via the foliar and root route. Thus, we highlighted the potential of the combined application of Se and Si and whether or not they are relevant to overcome the individual application in stress mitigation or even in plants without stress. In addition, we pointed out new directions for research on this topic in order to reinforce the combined use of stress relievers and their potential benefit to crop plants.

7.
Front Nutr ; 9: 1080147, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36570174

RESUMO

Background: The revalorization of agro-industrial by-products by applying ultraviolet A (UVA) radiation to biofortify with phenolic compounds has been studied in recent times, showing improvements in the individual and total phenolic content and their bioactivity. Therefore, the main aim of this work was to optimize the biofortification process of phenolic compounds by UVA radiation to strawberry agro-industrial by-products (RF). Moreover, the effect of UVA radiation on the potential biological activity of the phenolics accumulated in RF due to the treatment was also determined. Methods: The assays followed a factorial design with three variables at three levels: UVA dose (LOW, MEDIUM, and HIGH), storage temperature (5, 10, and 15°C), and storage time (0, 24, 48, and 72 h). At each experimental condition, phenylalanine ammonia-lyase (PAL) and polyphenol oxidase (PPO) enzymatic activities, total phenolic compound content (TPC), phenolics profile (TPCHPLC), and agrimoniin content (AGN) were evaluated; and the optimal UVA dose, storage time, and temperature were determined. In vitro bioaccessibility of the accumulated phenolic compound was studied on RF tissue treated with UVA at optimal process conditions. The digested extracts were tested for antiproliferative activity in colorectal cancer cells, cellular antioxidant capacity, and anti-inflammatory activity. Results: The results showed that applying UVA-HIGH (86.4 KJ/m2) treatment and storing the tissue for 46 h at 15°C increased PAL activity (260%), phenolic content (240%), and AGN (300%). The biofortification process improves the bioaccessibility of the main phenolic compound of RF by 9.8 to 25%. The digested optimum extract showed an IC50 for HT29 and Caco-2 cells of 2.73 and 5.43 µg/mL, respectively, and presented 60% cellular antioxidant capacity and 30% inhibition of NOX production. Conclusion: The RF treated with UVA is an excellent source of phenolic compounds; specifically, ellagitannins and the UVA radiation proved to be efficient in biofortify RF, significantly improving the phenolic compounds content and their bioactive properties with adequate bioaccessibility, adding value to the strawberry agro-industrial by-products.

8.
Int J Mol Sci ; 23(19)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36232478

RESUMO

The interaction of mitochondria with cellular components evolved differently in plants and mammals; in plants, the organelle contains proteins such as ALTERNATIVE OXIDASES (AOXs), which, in conjunction with internal and external ALTERNATIVE NAD(P)H DEHYDROGENASES, allow canonical oxidative phosphorylation (OXPHOS) to be bypassed. Plant mitochondria also contain UNCOUPLING PROTEINS (UCPs) that bypass OXPHOS. Recent work revealed that OXPHOS bypass performed by AOXs and UCPs is linked with new mechanisms of mitochondrial retrograde signaling. AOX is functionally associated with the NO APICAL MERISTEM transcription factors, which mediate mitochondrial retrograde signaling, while UCP1 can regulate the plant oxygen-sensing mechanism via the PRT6 N-Degron. Here, we discuss the crosstalk or the independent action of AOXs and UCPs on mitochondrial retrograde signaling associated with abiotic stress responses. We also discuss how mitochondrial function and retrograde signaling mechanisms affect chloroplast function. Additionally, we discuss how mitochondrial inner membrane transporters can mediate mitochondrial communication with other organelles. Lastly, we review how mitochondrial metabolism can be used to improve crop resilience to environmental stresses. In this respect, we particularly focus on the contribution of Brazilian research groups to advances in the topic of mitochondrial metabolism and signaling.


Assuntos
Proteínas Mitocondriais , NAD , Animais , Mamíferos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Desacoplamento Mitocondrial/metabolismo , NAD/metabolismo , Oxirredutases/metabolismo , Oxigênio/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Estresse Fisiológico , Fatores de Transcrição/metabolismo
9.
Plants (Basel) ; 11(19)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36235374

RESUMO

The association between population increase and the exploitation of natural resources and climate change influences the demand for food, especially in semi-arid regions, highlighting the need for technologies that could provide cultivated species with better adaptation to agroecosystems. Additionally, developing cultivation technologies that employ waste materials is highly desirable for sustainable development. From this perspective, this study aimed to evaluate whether seed priming with glass waste microparticles used as a silicon source under red light irradiation mitigates the effects of thermal and water stress on seedlings of Moringa oleifera. The experimental design was set up in randomized blocks using a 2 × 2 × 2 factorial arrangement consisting of seed priming (NSP-no seed priming, and SPSi-seed priming with glass microparticles under red light irradiation), soil water replenishment (W50-50%, and W100-100% of crop evapotranspiration-ETc), and temperature change (TC30°-30 °C day/25 °C night and TC40°-40 °C day/35 °C night). Seed priming with glass microparticles under red light irradiation mitigated the effects of thermal and water stress on seedlings of Moringa oleifera seedlings through the homeostasis of gas exchange, leaf water status, osmotic adjustment, and the antioxidant mechanism.

10.
Biol Res ; 55(1): 27, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35974357

RESUMO

BACKGROUND: Cytokinin signal transduction is mediated by a two-component system (TCS). Two-component systems are utilized in plant responses to hormones as well as to biotic and abiotic environmental stimuli. In plants, response regulatory genes (RRs) are one of the main members of the two-component system (TCS). METHOD: From the aspects of gene structure, evolution mode, expression type, regulatory network and gene function, the evolution process and role of RR genes in the evolution of the cotton genome were analyzed. RESULT: A total of 284 RR genes in four cotton species were identified. Including 1049 orthologous/paralogous gene pairs were identified, most of which were whole genome duplication (WGD). The RR genes promoter elements contain phytohormone responses and abiotic or biotic stress-related cis-elements. Expression analysis showed that RR genes family may be negatively regulate and involved in salt stress and drought stress in plants. Protein regulatory network analysis showed that RR family proteins are involved in regulating the DNA-binding transcription factor activity (COG5641) pathway and HP kinase pathways. VIGS analysis showed that the GhRR7 gene may be in the same regulatory pathway as GhAHP5 and GhPHYB, ultimately negatively regulating cotton drought stress by regulating POD, SOD, CAT, H2O2 and other reactive oxygen removal systems. CONCLUSION: This study is the first to gain insight into RR gene members in cotton. Our research lays the foundation for discovering the genes related to drought and salt tolerance and creating new cotton germplasm materials for drought and salt tolerance.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Secas , Regulação da Expressão Gênica de Plantas/genética , Genes Reguladores , Gossypium/genética , Peróxido de Hidrogênio/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética
11.
Plants (Basel) ; 11(9)2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35567101

RESUMO

Understanding how plants cope with stress and the intricate mechanisms thereby used to adapt and survive environmental imbalances comprise one of the most powerful tools for modern agriculture. Interdisciplinary studies suggest that knowledge in how plants perceive, transduce and respond to abiotic stresses are a meaningful way to design engineered crops since the manipulation of basic characteristics leads to physiological remodeling for plant adaption to different environments. Herein, we discussed the main pathways involved in stress-sensing, signal transduction and plant adaption, highlighting biochemical, physiological and genetic events involved in abiotic stress responses. Finally, we have proposed a list of practice markers for studying plant responses to multiple stresses, highlighting how plant molecular biology, phenotyping and genetic engineering interconnect for creating superior crops.

12.
Microorganisms ; 10(1)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35056599

RESUMO

Plants and their microbiomes, including plant growth-promoting bacteria (PGPB), can work as a team to reduce the adverse effects of different types of stress, including drought, heat, cold, and heavy metals stresses, as well as salinity in soils. These abiotic stresses are reviewed here, with an emphasis on salinity and its negative consequences on crops, due to their wide presence in cultivable soils around the world. Likewise, the factors that stimulate the salinity of soils and their impact on microbial diversity and plant physiology were also analyzed. In addition, the saline soils that exist in Mexico were analyzed as a case study. We also made some proposals for a more extensive use of bacterial bioinoculants in agriculture, particularly in developing countries. Finally, PGPB are highly relevant and extremely helpful in counteracting the toxic effects of soil salinity and improving crop growth and production; therefore, their use should be intensively promoted.

13.
Biol. Res ; 55: 27-27, 2022. ilus, tab, graf
Artigo em Inglês | LILACS | ID: biblio-1447503

RESUMO

BACKGROUND: Cytokinin signal transduction is mediated by a two-component system (TCS). Two-component systems are utilized in plant responses to hormones as well as to biotic and abiotic environmental stimuli. In plants, response regulatory genes (RRs) are one of the main members of the two-component system (TCS). METHOD: From the aspects of gene structure, evolution mode, expression type, regulatory network and gene function, the evolution process and role of RR genes in the evolution of the cotton genome were analyzed. RESULT: A total of 284 RR genes in four cotton species were identified. Including 1049 orthologous/paralogous gene pairs were identified, most of which were whole genome duplication (WGD). The RR genes promoter elements contain phytohormone responses and abiotic or biotic stress-related cis-elements. Expression analysis showed that RR genes family may be negatively regulate and involved in salt stress and drought stress in plants. Protein regulatory network analysis showed that RR family proteins are involved in regulating the DNA-binding transcription factor activity (COG5641) pathway and HP kinase pathways. VIGS analysis showed that the GhRR7 gene may be in the same regulatory pathway as GhAHP5 and GhPHYB, ultimately negatively regulating cotton drought stress by regulating POD, SOD, CAT, H2O2 and other reactive oxygen removal systems. CONCLUSION: This study is the first to gain insight into RR gene members in cotton. Our research lays the foundation for discovering the genes related to drought and salt tolerance and creating new cotton germplasm materials for drought and salt tolerance.


Assuntos
Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Filogenia , Estresse Fisiológico/genética , Genes Reguladores , Gossypium/genética , Secas , Peróxido de Hidrogênio/metabolismo
14.
Foods ; 10(12)2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34945455

RESUMO

Fruits and vegetables contain health-promoting compounds. However, their natural concentration in the plant tissues is low and in most cases is not sufficient to exert the expected pharmacological effects. The application of wounding stress as a tool to increase the content of bioactive compounds in fruits and vegetables has been well characterized. Nevertheless, its industrial application presents different drawbacks. For instance, during the washing and sanitizing steps post-wounding, the primary wound signal (extracellular adenosine triphosphate) that elicits the stress-induced biosynthesis of secondary metabolites is partially removed from the tissue. Furthermore, detrimental reactions that affect the quality attributes of fresh produce are also activated by wounding. Therefore, there is a need to search for technologies that emulate the wound response in whole fruits and vegetables while retaining quality attributes. Herein, the application of non-thermal technologies (NTTs) such as high hydrostatic pressure, ultrasound, and pulsed electric fields are presented as tools for increasing the content of health-promoting compounds in whole fruits and vegetables by inducing a wound-like response. The industrial implementation and economic feasibility of using NTTs as abiotic elicitors is also discussed. Whole fruits and vegetables with enhanced levels of bioactive compounds obtained by NTT treatments could be commercialized as functional foods.

15.
Plants (Basel) ; 10(12)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34961097

RESUMO

Kale (Brassica oleracea L. var. acephala DC) is a popular cruciferous vegetable originating from Central Asia, and is well known for its abundant bioactive compounds. This review discusses the main kale phytochemicals and emphasizes molecules of nutraceutical interest, including phenolics, carotenoids, and glucosinolates. The preventive and therapeutic properties of kale against chronic and degenerative diseases are highlighted according to the most recent in vitro, in vivo, and clinical studies reported. Likewise, it is well known that the application of controlled abiotic stresses can be used as an effective tool to increase the content of phytochemicals with health-promoting properties. In this context, the effect of different abiotic stresses (saline, exogenous phytohormones, drought, temperature, and radiation) on the accumulation of secondary metabolites in kale is also presented. The information reviewed in this article can be used as a starting point to further validate through bioassays the effects of abiotically stressed kale on the prevention and treatment of chronic and degenerative diseases.

16.
Compr Rev Food Sci Food Saf ; 20(5): 4450-4479, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34378312

RESUMO

Saccharomyces cerevisiae is the main biotechnological tool for the production of Baker's or Brewer's biomasses, largely applied in beverage and fermented-food production. Through its gene expression reprogramming and production of compounds that inactivate the growth of other microorganisms, S. cerevisiae is able to grow in adverse environments and in complex microbial consortia, as in fruit pulps and root flour fermentations. The distinct set of up-regulated genes throughout yeast biomass propagation includes those involved in sugar fermentation, ethanol metabolization, and in protective responses against abiotic stresses. These high abundant proteins are precursors of several peptides with promising health-beneficial activities such as antihypertensive, antioxidant, antimicrobial, immunomodulatory, anti-obesity, antidiabetes, and mitogenic properties. An in silico investigation of these S. cerevisiae derived peptides produced during yeast biomass propagation or induced by physicochemical treatments were performed using four algorithms to predict antimicrobial candidates encrypted in abundantly expressed stress-related proteins encoded by different genes like AHP1, TSA1, HSP26, SOD1, HSP10, and UTR2, or metabolic enzymes involved in carbon source utilization, like ENO1/2, TDH1/2/3, ADH1/2, FBA1, and PDC1. Glyceraldehyde-3-phosphate dehydrogenase and enolase II are noteworthy precursor proteins, since they exhibited the highest scores concerning the release of antimicrobial peptide candidates. Considering the set of genes upregulated during biomass propagation, we conclude that S. cerevisiae biomass, a food-grade product consumed and marketed worldwide, should be considered a safe and nonseasonal source for designing next-generation bioactive agents, especially protein encrypting antimicrobial peptides that display broad spectra activity and could reduce the emergence of microbial resistance while also avoiding cytotoxicity.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Biomassa , Conservantes de Alimentos , Proteínas de Choque Térmico , Proteínas Citotóxicas Formadoras de Poros , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
17.
Int J Mol Sci ; 22(15)2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34361053

RESUMO

Leaf senescence is a genetically regulated developmental process that can be triggered by a variety of internal and external signals, including hormones and environmental stimuli. Among the senescence-associated genes controlling leaf senescence, the transcriptional factors (TFs) comprise a functional class that is highly active at the onset and during the progression of leaf senescence. The plant-specific NAC (NAM, ATAF, and CUC) TFs are essential for controlling leaf senescence. Several members of Arabidopsis AtNAC-SAGs are well characterized as players in elucidated regulatory networks. However, only a few soybean members of this class display well-known functions; knowledge about their regulatory circuits is still rudimentary. Here, we describe the expression profile of soybean GmNAC-SAGs upregulated by natural senescence and their functional correlation with putative AtNAC-SAGs orthologs. The mechanisms and the regulatory gene networks underlying GmNAC081- and GmNAC030-positive regulation in leaf senescence are discussed. Furthermore, new insights into the role of GmNAC065 as a negative senescence regulator are presented, demonstrating extraordinary functional conservation with the Arabidopsis counterpart. Finally, we describe a regulatory circuit which integrates a stress-induced cell death program with developmental leaf senescence via the NRP-NAC-VPE signaling module.


Assuntos
Senescência Celular , Redes Reguladoras de Genes , Glycine max/fisiologia , Folhas de Planta/fisiologia , Proteínas de Plantas/metabolismo , Estresse Fisiológico , Transativadores/metabolismo , Proteínas de Plantas/genética , Transativadores/genética
18.
Acta sci., Anim. sci ; 43: e50468, 2021. ilus, graf
Artigo em Inglês | VETINDEX | ID: biblio-1459935

RESUMO

Agricultural production in semi-arid regions is limited due to water availability. In addition, the water quality available for irrigation is often compromised due to the high salt content present. Millet is a forage species considered tolerant to water deficit and moderately salt tolerant. In view of the above, the objective was to evaluate the growth of millet under water and saline stress associates. The experiment was carried out in a randomized block design, in a 4x3 factorial scheme, composed of four levels of water replacement, based on crop evapotranspiration (ETc): 25%.ETc, 50%.ETc, 75%.ETc and 100%.ETc and three levels of water salinity (0.03, 2.0 and 4.0 dS m-1). With 25%.ETc independent of salinity, all morphological characteristics of millet were affected, occurring death of plants in the initial growth phase. In the absence of salt and greater availability of water, greater plant growth occurred. With respect to salinity, there was a reduction in the increment of all variables evaluated, with the highest reduction at the highest saline level (4.0 dS m-1). Water and salt stresses, when associated, reduce the growth of millet, since concentrations above 2.0 dS m-1 and less than 50%.ETc compromise its full development, providing declines in yield.


Assuntos
Desidratação , Estresse Salino , Pennisetum/crescimento & desenvolvimento , Pennisetum/química
19.
Acta Sci. Anim. Sci. ; 43: e50468, 2021. ilus, graf
Artigo em Inglês | VETINDEX | ID: vti-762012

RESUMO

Agricultural production in semi-arid regions is limited due to water availability. In addition, the water quality available for irrigation is often compromised due to the high salt content present. Millet is a forage species considered tolerant to water deficit and moderately salt tolerant. In view of the above, the objective was to evaluate the growth of millet under water and saline stress associates. The experiment was carried out in a randomized block design, in a 4x3 factorial scheme, composed of four levels of water replacement, based on crop evapotranspiration (ETc): 25%.ETc, 50%.ETc, 75%.ETc and 100%.ETc and three levels of water salinity (0.03, 2.0 and 4.0 dS m-1). With 25%.ETc independent of salinity, all morphological characteristics of millet were affected, occurring death of plants in the initial growth phase. In the absence of salt and greater availability of water, greater plant growth occurred. With respect to salinity, there was a reduction in the increment of all variables evaluated, with the highest reduction at the highest saline level (4.0 dS m-1). Water and salt stresses, when associated, reduce the growth of millet, since concentrations above 2.0 dS m-1 and less than 50%.ETc compromise its full development, providing declines in yield.(AU)


Assuntos
Pennisetum/química , Pennisetum/crescimento & desenvolvimento , Desidratação , Estresse Salino
20.
Crit Rev Food Sci Nutr ; 60(6): 976-990, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-30663891

RESUMO

Meat curing, fermentation, and drying are both preservation technologies, and traditional manufacturing practices. Despite being considered a safe food, due to the several hurdles that prevent pathogen growth, dry-cured meat manufacturing may not ensure complete pathogen elimination. Besides, the final products are still susceptible to microbial contamination. Salmonella enterica is noteworthy among the pathogenic microorganisms that can contaminate these products. To survive hypertonic/hyperosmotic, acid, and low aw/desiccation stresses intrinsically associated with dry-curing, Salmonella has evolved with highly sophisticated mechanisms, comprising sensors/receptors, signaling cascade systems, and enzymes/transcription factors that ensure their tolerance and survival despite many harsh environmental conditions. Links between osmotic and acid stresses, such as the dissociable sigma factor of RNA polymerase, which regulates gene transcription, and mutual membrane receptors like the two-component system EnvZ/OmpR, which senses abiotic conditions, lead to stress cross-protection. Furthermore, virulence gene expression seems to be triggered by sublethal stresses on pre-adapted Salmonella cells, increasing their adherence and invasiveness of host cells. These are evidence that the ability to tolerate stresses enhances Salmonella pathogenicity and compromises the safety of dry-cured meats, by sheltering the pre-exposed and, subsequently, more virulent, stressed bacterial cells.


Assuntos
Contaminação de Alimentos , Microbiologia de Alimentos , Produtos da Carne/microbiologia , Salmonella enterica/isolamento & purificação , Dessecação , Conservação de Alimentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA