Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53.212
Filtrar
1.
Preprint em Inglês | SciELO Preprints | ID: pps-9357

RESUMO

Brazilian beer market presented remarkable increasement last years. Despite of this, Brazilian Amazon states presented discrete growth, with decreasement in some important states as Amazonas. Cubiu (Solanum sessiliflorum) is a fruiting plant which has been used traditionally by people of the upper Amazon and Orinoco basin as artisanal medicine because of its bioactive molecules' richness. Because of world trend of innovative brewing products as fruit-beers, the aim of this work was to evaluate the composition and antioxidant activity of an artisanal beer added of cubiu. A total of 28 g/L of cubiu's pulp were added to the beer in maturation's phase, incubated at 4 °C for 10 days. Compared to a control assay, the resulting beer presented higher turbidity and soluble protein concentration. Total phenolic compounds concentration (435,93 µgGAE/mL) and antioxidant activity (66,36% of free radicals scavenged) were significantly greater than control assay (p <0,001). The results indicates that a low amount of cubiu's pulp is sufficient to makes the beer functionally antioxidant. The subsequent efforts must to evaluate the acceptance of a beer added of S. sessiliflorum pulp to assessing its market potential.


O mercado brasileiro de cerveja apresentou notável crescimento nos últimos anos. Apesar disso, os estados amazônicos brasileiros apresentaram crescimento discreto, com queda em alguns estados importantes como o Amazonas. Cubiu (Solanum sessiliflorum) é uma planta frutífera que tem sido tradicionalmente utilizada pelos povos do alto Amazonas e da bacia do Orinoco como medicamento artesanal devido à sua riqueza em moléculas bioativas. Devido à tendência mundial de produtos cervejeiros inovadores, como as cervejas de frutas, o objetivo deste trabalho foi avaliar a composição e atividade antioxidante de uma cerveja artesanal adicionada de cubiu. Um total de 28 g/L de polpa de cubiu foram adicionados à cerveja em fase de maturação, incubada a 4 °C por 10 dias. Comparada a um ensaio controle, a cerveja resultante apresentou maior turbidez e concentração de proteína solúvel. A concentração total de compostos fenólicos (435,93 µgGAE/mL) e a atividade antioxidante (66,36% dos radicais livres neutralizados) foram significativamente superiores ao ensaio controle (p <0,001). Os resultados indicam que uma pequena quantidade de polpa de cubiu é suficiente para tornar a cerveja funcionalmente antioxidante. Os esforços subsequentes devem avaliar a aceitação de uma cerveja adicionada de polpa de S. sessiliflorum para avaliar seu potencial de mercado.

2.
Chemosphere ; 362: 142805, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38996979

RESUMO

This study presents the green synthesis and multifunctional properties of Cu/NiO nanocomposites (NCs) fabricated with varying ratios (90:10, 80:20, and 70:30) using Commelina benghalensis leaf extract. X-ray diffraction (XRD) analysis confirmed the polycrystalline nature of the NCs, revealing crystallite sizes of 13.62, 13.22, and 7.14 nm. Scanning electron microscopy (SEM) showed rod-shaped and agglomerated particles with sizes ranging from 17.64 to 22.97 nm. Energy-dispersive X-ray spectroscopy (EDX) verified the elemental composition of copper, nickel, oxygen, and carbon. UV-visible spectroscopy determined the energy band gaps to be in the range of 1.24-1.56 eV. Fourier-transform infrared spectroscopy (FT-IR) indicated the presence of bioactive compounds responsible for the reduction of precursor metal salts. The Cu/NiO NCs exhibited remarkable antimicrobial activity, with the 90:10 ratio showing the highest zones of inhibition at 32.76 ± 0.23 mm, 18.66 ± 0.33 mm, and 14.36 ± 0.32 mm against Bacillus subtilis, Staphylococcus aureus, and Escherichia coli, respectively. Additionally, the 70:30 Cu/NiO NCs demonstrated superior antioxidant activity, with a radical scavenging efficiency of 83.22%, closely approaching that of ascorbic acid (96.98%). Photocatalytic evaluations revealed that the NCs were highly effective in degrading environmental pollutants, achieving 97.69% degradation of malachite green and 96.52% of congo red under UV light irradiation. The novelty of this work lies in the use of Commelina benghalensis leaf extract as a sustainable and eco-friendly reducing and stabilizing agent for synthesizing Cu/NiO NCs, offering a green alternative to conventional methods. The synergistic effects between Cu and NiO in the different compositions (90:10, 80:20, and 70:30) enhanced the overall antimicrobial and photocatalytic activities, highlighting their potential for environmental remediation applications.

3.
Chem Biol Interact ; 399: 111142, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39019423

RESUMO

Several marine drugs exert anticancer effects by inducing oxidative stress, which becomes overloaded and kills cancer cells when redox homeostasis is imbalanced. The downregulation of antioxidant signaling induces oxidative stress, while its upregulation attenuates oxidative stress. Marine drugs have miRNA-modulating effects against cancer cells. However, the potential antioxidant targets of such drugs have been rarely explored. This review aims to categorize the marine-drug-modulated miRNAs that downregulate their antioxidant targets, causing oxidative stress in anticancer treatments. We also categorize the downregulation of oxidative-stress-inducing miRNAs in antioxidant protection among non-cancer cells. We summarize the putative antioxidant targets of miRNA-modulating marine drugs by introducing a bioinformatics tool (miRDB). Finally, the marine drugs affecting antioxidant targets are surveyed. In this way, the connections between marine drugs and their modulating miRNA and antioxidant targets are innovatively categorized to provide a precise network for exploring their potential anticancer functions and protective effects on non-cancer cells.

4.
Fitoterapia ; 177: 106128, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39025316

RESUMO

The long-term stability in real and accelerated time for galenic oils based on full-spectrum cannabis has been studied, using sesame oil as a dilutant. Sesame oil is one of the most used vehicles in the cannabis pharmaceutical industry due to the costs and increased oral bioavailability of cannabinoids. The real-time assays conducted at 25 °C over twelve months demonstrated high stability and showed no significant changes in the composition of cannabinoids, total polyphenols, flavonoids, or antioxidant capacity. In these studies, it was observed that there was no development of microorganisms compromising the stability of the oils over a year. The three oil varieties exhibited a high bactericidal capacity against E. coli, S. aureus, and P. larvae.

5.
Environ Res ; 260: 119567, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39029728

RESUMO

The study was conducted to determine the chemical and structural properties of polysaccharides extracted from the marine macroalgae Nemalion cari-cariense. Furthermore, evaluate the anticancer and free radical scavenging activity of purified N. cari-cariense polysaccharide. Approximately 41.6% (w/w) of crude polysaccharide was extracted from N. cari-cariense macroalgae biomass. After deproteinization, the purified polysaccharide's major chemical composition was found to be 92.6%, with all protein content removed. The purified polysaccharide had ash and moisture % of 23.01% and 4.03%, respectively. The C, H, and N of the test polysaccharide were analyzed using GC-MS, with results of 39.21%, 5.87%, and 4.29%, respectively. Furthermore, this analysis also revealed the monosaccharide composition such as glucose, galactose, mannose, xylose, and rhamnose glucose, galactose, mannose, xylose, and rhamnose 54.62%, 29.64%, 2.8%, 5.9%, and 6.8% respectively. The molecular weight of purified polysaccharide was found as 49 kDa through PAGE analysis. The FT-IR analysis revealed that the presence of functional groups exactly attributed to polysaccharide and 1H and 13C-NMR analyses confirmed the structural properties of N. cari-cariense polysaccharide. The free radicals scavenging ability of purified N. cari-cariense polysaccharide was investigated by various assays such as total antioxidant assay (22.3%-72.5% at 50-250 µg mL-1), DPPH assay (23.6%-76.9% at 10-160 µg mL-1), OH radical scavenging assay (13.6%-70.2% at 50-250 µg mL-1 dosage, and SO radical scavenging assay (27.6-68.41% at 50-250 µg mL-1 concentration). The polysaccharide demonstrated 82.63% anticancer activity towards the A549 lung cancer cell line at 1000 µg mL-1 dosage. The findings suggest that this polysaccharide has biological applications.

6.
Int J Biol Macromol ; 276(Pt 2): 133861, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39029838

RESUMO

Acidic exopolysaccharide (EPS) was produced by a marine actinobacterium Streptomyces vinaceusdrappus strain AMG31 with the highest yield of 10.6 g/l. The synthesized EPS has an average molecular weight of 5.1 × 104 g/mol and contains arabinose, glucose, galacturonic acid (0.5:2:2 M ratio), with 39.77 % uronic acid residues and 18.8 % sulfate detected. EPS exhibited antioxidant activities with 93.8 % DPPH radical scavenging and 344.7 µg/mg total antioxidant capacity. It displayed anti-inflammatory effects by inhibiting 5-LOX and COX-2. Regarding the cytotoxic activity, the IC50 values are 301.6 ± 11.8, 260.8 ± 12.2, 29.4 ± 13.5, 351.3 ± 11.2, 254.1 ± 9.8, and 266.5 ± 10.4 µg/ml for PC-3, HEP-2, MCF-7, HCT-116, A-549, HepG-2 respectively, which indicate that the produced EPS does not have strong cytotoxic activities. Moreover, the EPS showed anti-Alzheimer activity via inhibition of the Butyrylcholinesterase enzyme, with the highest percentage of 84.5 % at 100 µg/ml. Interestingly, the EPS showed superior anti-obesity activity by inhibiting lipase enzyme with a rate of 95.3 % compared to orlistat as a positive control (96.8 %) at a concentration of 1000 µg/ml. Additionally, the produced EPS displayed the highest anti-diabetic properties by inhibiting α-amylase (IC50 31.49 µg/ml) and α-glucosidase (IC50 6.48 µg/ml), suggesting antidiabetic potential analogous to acarbose. EPS exhibited promising antibacterial and antibiofilm activity against a wide range of Gram-positive and Gram-negative pathogenic bacteria.

7.
Poult Sci ; 103(9): 103973, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38972280

RESUMO

This study explored the ability of formic acid (FA) to replace antibiotics in broiler chicken diets. It examined how FA affected the chickens' growth, carcass characteristics, blood chemistry, and gut bacteria. The experiment randomly assigned 300 one-day-old (Ross 308) broiler chicks to 5 groups, each divided into 6 replicates with 10 unsexed chicks. The following were the treatments: 1st group, negative control (NC): only received a basal diet; 2nd group, positive control (PC): received a basal diet supplemented with 0.5 grams of Colistin antibiotic per kilogram of diet; 3rd, 4th, and 5th groups (FA2, FA4, and FA6) these groups received a basal diet along with formic acid added at increasing levels: 2, 4, and 6 Cm3 per kilogram of diet, respectively. Results found no significant differences in live body weight (LBW) or body weight gain (BWG) between treatment groups, except for LBW at one week and BWG at 0 to 1 and 4 to 5 wk of age. No significant variations were found in feed intake (FI) and feed conversion ratio (FCR) among the treatment groups, excluding FI and FCR at 1 to 2 wk of age. The treatments significantly impacted carcass traits, dressing percentage, breast meat, thigh meat, spleen, giblets, blood levels of urea, creatinine, total protein, globulin, and albumin, as well as the activity of enzymes alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in chicks fed different diets compared to control groups. The addition of FA to the diet significantly impacted antioxidant levels. Also, the FA2 group had the highest total bacterial count (TBC). However, the FA6 group was the opposite; it had the lowest levels of harmful bacteria, such as E. coli and Coliform. Supplementing broiler diets with formic acid improves blood parameters, antioxidant activity, and gut bacteria counts, with 4.0 cm³ formic acid/kg diet supplementation promoting optimal broiler health and product quality.

8.
J Sci Food Agric ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39056272

RESUMO

BACKGROUND: The role of nitric oxide (NO) in plant stress tolerance, as well as in increasing post-harvest quality, has been extensively demonstrated in several fruits and vegetable crops; however, the effects of its pre-harvest application on post-harvest quality are still poorly documented. Therefore, the pre-harvest application of NO in red beet (Beta vulgaris subsp. vulgaris) plants cultivated under well-watered and drought conditions was evaluated to assess whether it improves the post-harvest quality of their storage roots. Red beet plants cultivated under well-watered (80% of water holding capacity) or drought condition (15% of water holding capacity) were sprayed weekly with water (control) or 100 µmol L-1 sodium nitroprusside (SNP), an NO donor. Sixty-six days after sowing, red beet roots were harvested, and root yield, total sugar yield, reducing sugars, non-reducing sugars, proteins, lipids, root ashes, root moisture, soluble solids, titratable acidity, pH, vitamin C, total phenolics, total betalains, betacyanins, betaxanthins and antioxidant capacity were determined. RESULTS: While drought led to a reduction in root yield, sugars, lipids and titratable acidity, it increased phenolic compounds, betalains and the antioxidant capacity of beets. SNP reversed the negative effects of drought on sugar, lipid and organic acid contents and increased antioxidant capacity independent of stress. CONCLUSION: Pre-harvest SNP treatment reversed drought-induced yield reductions in beets, while boosting bioactive compounds and antioxidant capacity. It also enhanced vitamin C content independently, indicating its dual role in stress mitigation and beet quality improvement. Future research should explore other crops and stress conditions. © 2024 Society of Chemical Industry.

9.
ACS Biomater Sci Eng ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39056337

RESUMO

Itaconic acid and its derivative 4-octyl itaconate (OI) represent a novel anti-inflammatory medication that has demonstrated efficacy in multiple inflammation models because of its minimal side effects. Recently, natural polymers conjugated with small molecule drugs, known as polymer-drug conjugates (PDCs), have emerged as a promising approach to sustained drug release. In this work, we reported an approach to prepare a PDC containing an OI and make it into an injectable hydrogel. Chitosan (CS) was selected for PDC synthesis because of its abundant free amino groups that can be conjugated with molecules containing carboxyl groups by carbodiimide chemistry. We used an ethanol/water cosolvent system to synthesize a CS-OI conjugate via EDC/NHS catalysis. The CS-OI conjugate had improved water solubility and unique anti-inflammatory activity and did not show compromised antibacterial activity compared with unmodified CS. Beta-glycerophosphate (ß-GP) cross-linked CS-OI hydrogel exhibited good injectability with sustainable OI release and effectively modulated inflammatory response in a rat model. Therefore, this study provides valuable insights into the design of PDC hydrogels with inflammatory modulatory properties.

10.
BMC Complement Med Ther ; 24(1): 272, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39026301

RESUMO

BACKGROUND: Cymbopogon is a member of the family Poaceae and has been explored for its phytochemicals and bioactivities. Although the antimicrobial activities of Cymbopogon spp. extracts have been extensively studied, comprehensive analyses are required to identify promising compounds for the treatment of antimicrobial resistance. Therefore, this study investigated the antioxidant and antimicrobial properties of Cymbopogon spp. ethanolic extracts in every single organ. METHODS: Ethanolic extracts were obtained from three Indonesian commercial species of Cymbopogon spp., namely Cymbopogon citratus (L.) Rendle, Cymbopogon nardus (DC.) Spatf., and Cymbopogon winterianus Jowitt. The leaf, stem, and root extracts were evaluated via metabolite profiling using gas chromatography-mass spectrometry (GC-MS). In silico and in vitro analyses were used to evaluate the antioxidant and antimicrobial properties of the Cymbopogon spp. ethanolic extracts. In addition, bioactivity was measured using cytotoxicity assays. Antioxidant assays were performed using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2-azino-bis [3-ethylbenzothiazoline-6-sulfonic acid (ABTS) to determine toxicity to Huh7it-1 cells using a tetrazolium bromide (MTT) assay. Finally, the antimicrobial activity of these extracts was evaluated against Candida albicans, Bacillus subtilis, Staphylococcus aureus, and Escherichia coli using a well diffusion assay. RESULTS: GC-MS analysis revealed 53 metabolites. Of these, 2,5-bis(1,1-dimethylethyl)- phenol (27.87%), alpha-cadinol (26.76%), and 1,2-dimethoxy-4-(1-propenyl)-benzene (20.56%) were the predominant compounds. C. winterianus and C. nardus leaves exhibited the highest antioxidant activity against DPPH and ABTS, respectively. Contrastingly, the MTT assay showed low cytotoxicity. C. nardus leaf extract exhibited the highest antimicrobial activity against E. coli and S. aureus, whereas C. winterianus stem extract showed the highest activity against B. substilis. Furthermore, computational pathway analysis predicted that antimicrobial activity mechanisms were related to antioxidant activity. CONCLUSIONS: These findings demonstrate that the leaves had strong antioxidant activity, whereas both the leaves and stems showed great antimicrobial activity. Furthermore, all Cymbopogon spp. ethanolic extracts showed low toxicity. These findings provide a foundation for future studies that assess the clinical safety of Cymbopogon spp. as novel drug candidates.


Assuntos
Anti-Infecciosos , Antioxidantes , Cymbopogon , Extratos Vegetais , Folhas de Planta , Raízes de Plantas , Antioxidantes/farmacologia , Antioxidantes/química , Cymbopogon/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Folhas de Planta/química , Raízes de Plantas/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Caules de Planta/química , Testes de Sensibilidade Microbiana , Humanos , Cromatografia Gasosa-Espectrometria de Massas , Indonésia
11.
BMC Plant Biol ; 24(1): 689, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030471

RESUMO

BACKGROUND: Boron (B) is an essential micronutrient for plants. Inappropriate B supply detrimentally affects the productivity of numerous crops. Understanding of the molecular responses of plants to different B supply levels would be of significance in crop improvement and cultivation practices to deal with the problem. RESULTS: We conducted a comprehensive analysis of the transcriptome and proteome of tobacco seedlings to investigate the expression changes of genes/proteins in response to different B supply levels, with a particular focus on B deficiency. The global gene and protein expression profiles revealed the potential mechanisms involved in the responses of tobacco to B deficiency, including up-regulation of the NIP5;1-BORs module, complex regulation of genes/proteins related to cell wall metabolism, and up-regulation of the antioxidant machinery. CONCLUSION: Our results demonstrated that B deficiency caused severe morphological and physiological disorders in tobacco seedlings, and revealed dynamic expression changes of tobacco genes/proteins in response to different B supply levels, especially to B deficiency, thus offering valuable insights into the molecular responses of tobacco to B deficiency.


Assuntos
Boro , Nicotiana , Proteoma , Transcriptoma , Boro/deficiência , Boro/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Proteoma/metabolismo , Regulação da Expressão Gênica de Plantas , Plântula/genética , Plântula/metabolismo , Plântula/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilação da Expressão Gênica
12.
BMC Mol Cell Biol ; 25(1): 18, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030480

RESUMO

BACKGROUND: Circulating microRNAs have been implicated in a diverse array of biological and pathological phenomena. Their potential utility as noninvasive biomarkers for screening and diagnosing various diseases has been proposed. OBJECTIVE: This study aimed to explore the potential role of the miRNAs miR-122 and miR-486 as molecular biomarkers in the pathogenesis of hepatitis C virus (HCV) infection. Thus, miR-122 and miR-486 were detected in the serum of HCV patients and healthy controls. Moreover, the potential correlations of miR-122 and miR-486 with viral complications, such as physical activity, pain, muscle fatigue, and HCV infection, were identified. METHODS: A total of 150 subjects aged 30 to 66 years were included in this study. The patients were classified as patients with chronic hepatitis C virus (CHC) (n = 110) or healthy controls (n = 40). Real-time polymerase chain reaction (PCR) analyses were performed to determine miR-122 and miR-486 expression. Physical activity (PA), pain score, HCV genotyping, viral overload, aspartate transaminase (AST), alanine transaminase (ALT), lactic acid dehydrogenase (LDH), creatine kinase (CK), and antioxidant status were also estimated by using prevalidated questionnaires, PCR, and spectrophotometric analyses. RESULTS: Compared with those in normal controls, significant increases in the serum levels of miR-122 and miR-486 were reported in patients with CHC. In physically active CHC patients, there was a significant correlation between the expression of miRNAs and increased alanine transaminase (ALT), aspartate transaminase (AST), fibrosis scores, and inflammation activity, but no association was reported for hepatitis C virus (HCV) RNA or viral load. Additionally, significant decreases in LDH, CK, GSSG, and pain scores and increases in TAC, GSH, and the GSH/GSSG ratio were reported. Moreover, the expression of miR-122 and miR-486 was positively correlated with changes in body mass index (BMI) and liver fibrosis stage, as well as negatively correlated with sex, PA, TAC, GSH, GSSG, and the GSH/GSSG ratio. CONCLUSION: MiR-122 and miR-486 expression levels were strongly correlated with physical activity, pain perception, and muscle fatigue biomarkers in HCV-infected patients. These miRNA levels were associated with elevated AST, ALT, fibrosis scores, LDH, CK, and antioxidant status, thus suggesting their potential as biomarkers for disease severity and oxidative stress. However, no correlation was observed with viral load or HCV-RNA expression, thus implying that these miRNAs may impact disease progression and symptoms through host factors, rather than directly affecting viral replication. In summary, the results demonstrated that molecular studies of miR-22 and miR-468 and their associations with PA, pain, adiposity, sex differences, and muscle fatigue, as well as routine biomarkers, could be useful as prognostic nanoninvasive biomarkers, thus providing novel therapeutic targets for CHC infection.


Assuntos
Biomarcadores , MicroRNA Circulante , Exercício Físico , MicroRNAs , Humanos , Pessoa de Meia-Idade , Masculino , Feminino , Biomarcadores/sangue , Idoso , MicroRNAs/sangue , MicroRNAs/genética , MicroRNA Circulante/sangue , Adulto , Hepacivirus/genética , Hepatite C Crônica/sangue , Estudos de Casos e Controles , Alanina Transaminase/sangue , Aspartato Aminotransferases/sangue
13.
Anim Microbiome ; 6(1): 40, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030597

RESUMO

Radiation enteritis is a frequently encountered issue for patients receiving radiotherapy and has a significant impact on cancer patients' quality of life. The gut microbiota plays a pivotal role in intestinal function, yet the impact of irradiation on gut microorganisms is not fully understood. This study explores the gastroprotective effect and gut microbiome-modulating potential of ubiquinol (Ubq), the reduced form of the powerful antioxidant CoQ-10. For this purpose, male albino rats were randomly assigned to four groups: Control, IRR (acute 7 Gy γ-radiation), Ubq_Post (Ubq for 7 days post-irradiation), and Ubq_Pre/Post (Ubq for 7 days pre and 7 days post-irradiation). The fecal microbiomes of all groups were profiled by 16S rRNA amplicon sequencing followed by bioinformatics and statistical analysis. Histopathological examination of intestinal tissue indicated severe damage in the irradiated group, which was mitigated by ubiquinol with enhanced regeneration, goblet cells, and intestinal alkaline phosphatase expression. Compared to the irradiated group, the Ubq-treated groups had a significant recovery of intestinal interleukin-1ß, caspase-3, nitric oxide metabolites, and thio-barbituric reactive substances to near-healthy levels. Ubq_Pre/Post group displayed elevated peroxisome proliferator-activated receptor (PPAR-γ) level, suggesting heightened benefits. Serum insulin reduction in irradiated rats improved post-Ubq treatment, with a possible anti-inflammatory effect on the pancreatic tissue. Fecal microbiota profiling revealed a dysbiosis state with a reduction of bacterial diversity post-irradiation, which was re-modulated in the Ubq treated groups to profiles that are indistinguishable from the control group. These findings underscore Ubq's gastroprotective effects against radiation-induced enteritis and its potential in restoring the gut microbiota's diversity and balance.

14.
Cell Biochem Biophys ; 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39060916

RESUMO

Type 2 diabetes mellitus (T2DM), characterized by insulin resistance and glucose dysmetabolism, is a major metabolic disorder accompanied with health and financial burden. Recently, research findings showed that orange peel extract (OPE) has health benefits such as improved insulin sensitivity and glucose metabolism. The present study aimed at establishing the role of naringin from OPE on T2DM-induced glucose and lipid dysmetabolism. Thirty male (30) Wistar rats were randomized into five groups: control, diabetes, diabetes + naringin, diabetes + orange peel, and diabetes + metformin. Oral administration was once per day for 28 days. After 28 days of treatment, naringin ameliorated the diabetes-induced increase in blood sugar, homeostatic model assessment (HOMA) IR, triglyceride, total cholesterol, triglyceride/high density lipoprotein, total cholesterol/high density lipoprotein, triglyceride glucose index, glucose synthase kinase-3, lactate, lactate dehydrogenase, malondialdehyde, c-reactive protein, and tumor necrosis factor α compared with the diabetic untreated animals. Furthermore, naringin reversed diabetes-induced decrease in serum insulin, HOMA B, HOMA S, quantitative insulin-sensitivity check index, high-density lipoprotein, total antioxidant capacity, superoxide dismutase, catalase, glucose transporter-4, and hepatic glycogen. This study showed that naringin prevented diabetes-induced dysglycemia and dyslipidemia via glucose synthase kinase-3 and oxidative stress-dependent pathways.

15.
Sheng Wu Gong Cheng Xue Bao ; 40(7): 2010-2021, 2024 Jul 25.
Artigo em Chinês | MEDLINE | ID: mdl-39044572

RESUMO

D-allose, a rare sugar with anti-oxidant, anti-inflammatory, anti-cancer, immunosuppressing and other physiological functions, has become a research hotspot in recent years. This paper describes the physical and chemical properties, synthesis methods, metabolism, physiological functions, and applications of D-allose, aiming to promote the functional development of D-allose and facilitate the application of D-allose in the food field and clinical treatment.


Assuntos
Glucose , Glucose/metabolismo , Humanos , Antioxidantes/metabolismo , Anti-Inflamatórios/farmacologia , Animais
16.
Pharm Dev Technol ; : 1-12, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39045751

RESUMO

Hesperidin (HSP) is a natural flavonoid glycoside with very low aqueous solubility and a slow dissolution rate, limiting its effectiveness. This study aims to address these issues by creating co-crystals of hesperidin with water-soluble small molecules (co-formers) such as L-arginine, glutathione, glycine, and nicotinamide. Using the solvent drop grinding method, we prepared three different molar ratios of hesperidin to co-formers (1:1, 1:3, and 1:5) and conducted in-vitro solubility and dissolution studies. The results demonstrated that the prepared co-crystals exhibited significantly enhanced solubility and dissolution rates compared to untreated hesperidin. Of particular note, the HSP co-crystals formula (HSP: L-arg 1:5) displayed approximately 4.5 times higher dissolution than pure hesperidin. Further analysis using FTIR, powder x-ray diffraction patterns, and DSC thermograms validated the formation of co-crystals between HSP and L-arginine. Additionally, co-crystallization with L-arginine improved the in vitro anti-inflammatory and antioxidant activities of hesperidin compared to the untreated drug. This study highlights the potential of using water-soluble small molecules (co-formers) through co-crystallization to enhance the solubility, dissolution, and biological activities of poorly water-soluble drugs. Furthermore, in vivo studies are crucial to validate these promising results.

17.
BMC Vet Res ; 20(1): 331, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039592

RESUMO

In aquaculture, fish are exposed to many stressors, such as climate changes and infectious diseases that affect their performance, immunity, and welfare. Freshwater fish subjected to salt bath become exhausted and stressed. In this experiment, Nile tilapia were exposed to a salt bath at a dose of 30 ppt for 30 min a day. Vitamin C and vitamin E are well-known antioxidants that are used in aquaculture. Fish received dietary nanoparticles of chitosan-vitamin C and chitosan-vitamin E (CCE-NPs) for different periods (7 and 14 days) pre- (G2) and post-salt treatment (G3). In the control fish (G1), cortisol 5.44 µg/dL and glucose 91.67 mg/dL were significantly up-regulated post-salt treatment by 1 h and 24 h, respectively, whereas those (G2) fed CCE-NPs diet had significantly lower values of 4.72 and 3.25 µg/dL; 86.3 and 84.3 mg/dL, respectively. A rapid decrease of glucose 68.3 and 66.3 mg/dL was noticed in those (G2) fed CCE-NPs diet compared to the control 84.67 mg/dL at 48 h post-stress. Regardless of the supplementation period, fish (G2) could partially restore normal food reflex at 48 h (post-salt bath) and fully restored at 72 h compared to 7 days in the control (G1). After 48 h, fish that received dietary CCE-NPs (G2 and G3) restored normal mucus lysozyme levels, whereas the control did not restore pre-treatment values till the seventh day. Mucus antibacterial activity, fish received rapid dietary CCE-NPs (G2) and partially restored average values (pre-salt bath) at 96 h. The salt treatment could provoke gene expression of pro-inflammatory cytokines interleukin (IL-1ß) and tumor necrosis (TNF)-α in the head kidney of fish at 24 h post-salt bath to 5.9-8.35 fold-change, respectively, with a rapid decline in fish (G2) the gene expression. Post-salt bath (24 h), the gene expression of glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT) was higher in fish (G2) than in the control group (G1) regardless of the supplementation period (7 and 14 days). Bacterial infection S. agalactiae (OL471408), a significantly lower MR was recorded in G2 at 40% and 33.3% compared to the control G1 MR (53.3%), with an RPL of 24.95% and 37.5%. In conclusion, Nile tilapia treated with a 30 ppt salt became more vulnerable to S. agalactiae. Adding CCE-NPs to the Nile tilapia diet for 7- and 14-day pre-salt bath could increase immune and antioxidant-related gene expression to counteract S. agalactiae infection.


Assuntos
Ácido Ascórbico , Quitosana , Ciclídeos , Nanopartículas , Vitamina E , Animais , Ciclídeos/imunologia , Ácido Ascórbico/administração & dosagem , Ácido Ascórbico/farmacologia , Nanopartículas/administração & dosagem , Quitosana/farmacologia , Quitosana/administração & dosagem , Vitamina E/farmacologia , Vitamina E/administração & dosagem , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Suplementos Nutricionais , Hidrocortisona/sangue , Ração Animal/análise , Dieta/veterinária , Glicemia/efeitos dos fármacos
18.
Int J Food Microbiol ; 422: 110823, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-38991433

RESUMO

Essential oils possess significant antimicrobial and antioxidant properties and are increasingly used as natural substitutes for food preservation. Therefore, this study investigated the potential application of rosemary essential oil (REO) and REO nano-emulsion in the dairy plant. The antimicrobial effects of REO and REO nano-emulsion were determined by an agar well diffusion assay after chemical profiling by Gas Chromatography-Mass Spectrometry (GC-MS). The REO nano-emulsion was characterized by a Transmission Electron Microscope (TEM). The REO chemical profile revealed the presence of 42 chemical compounds, including 1, 8-cineole (9.72 %), and α-pinene (5.46 %) as major active components. REO nano-emulsion demonstrated significant antimicrobial activity compared to REO (P < 0.05) with a MIC value of 0.0001 mg/ml against Listeria monocytogenes and Aspergillus flavus and 0.001 mg/ml against Pseudomonas aeruginosa and Bacillus cereus. REO nano-emulsion enhanced the oxidative stability of pasteurized fresh cream, revealing a non-significant difference compared with that inoculated with butylated hydroxy anisol (BHA; synthetic antioxidant) (P˃ 0.05). Fortified cream and Karish cheese with REO nano-emulsion were evaluated organoleptically, and the results showed higher grades of overall acceptability when compared to control samples with a statistically significant difference (P < 0.05). Viability studies were estimated using the previously mentioned microorganisms in fortified fresh cream and Karish cheese with REO nano-emulsion. Results of the fortified cream showed a complete reduction of L. monocytogenes, A. flavus, and B. cereus on days 5, 7, and 10, respectively, and a 96.93 % reduction of P. aeruginosa by the end of the storage period. Regarding Karish cheese viability studies, C. albicans, A. flavus, and P. aeruginosa exhibited complete reduction on days 10, 10, and 15 of storage, respectively. In conclusion, REO nano-emulsion was recommended as a natural, safe, and effective antimicrobial and antioxidant additive in the dairy industry.


Assuntos
Anti-Infecciosos , Antioxidantes , Queijo , Emulsões , Óleos Voláteis , Antioxidantes/farmacologia , Queijo/microbiologia , Queijo/análise , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Testes de Sensibilidade Microbiana , Conservação de Alimentos/métodos , Microbiologia de Alimentos , Pasteurização/métodos , Listeria monocytogenes/efeitos dos fármacos , Listeria monocytogenes/crescimento & desenvolvimento , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento
19.
J Xenobiot ; 14(3): 923-938, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39051347

RESUMO

This study examines the physiological and immunological effects of 0.5 ppm carbaryl exposure on juvenile Asian seabass (Lates calcarifer) over 12 h to 72 h. Notable results include decreased activities of liver enzymes catalase (CAT), lactate dehydrogenase (LDH), and glutathione peroxidase (GSH-PX), while superoxide dismutase (SOD) levels remained stable, with the lowest activities of CAT and GSH-PX observed at 72 h. Serum biochemistry revealed increased alkaline phosphatase (AKP) and acid phosphatase (ACP) at 24 h, with declining aspartate aminotransferase (AST) and a peak in creatinine at 48 h. Histopathological analysis showed carbaryl-induced necrosis in liver and spleen cells, and increased melanomacrophage centers in both organs. Additionally, immune gene expression analysis indicated an upregulation of heat shock proteins and consistent elevation of complement component C3 and interleukin-8 (IL-8). These findings suggest that carbaryl exposure significantly impairs organ function and modulates immune responses in L. calcarifer, underlining the need for further research on protective strategies against pesticide impacts in aquaculture.

20.
Nano Lett ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39058893

RESUMO

Chronic diabetic wound patients usually show high glucose levels and systemic immune disorder, resulting in high reactive oxygen species (ROS) levels and immune cell dysfunction, prolonged inflammation, and delayed wound healing. Herein, we prepared an antioxidant and immunomodulatory polymer vesicle for diabetic wound treatment. This vesicle is self-assembled from poly(ε-caprolactone)36-block-poly[lysine4-stat-(lysine-mannose)22-stat-tyrosine)16] ([PCL36-b-P[Lys4-stat-(Lys-Man)22-stat-Tyr16]). Polytyrosine is an antioxidant polypeptide that can scavenge ROS. d-Mannose was introduced to afford immunomodulatory functions by promoting macrophage transformation and Treg cell activation through inhibitory cytokines. The mice treated with polymer vesicles showed 23.7% higher Treg cell levels and a 91.3% higher M2/M1 ratio than those treated with PBS. Animal tests confirmed this vesicle accelerated healing and achieved complete healing of S. aureus-infected diabetic wounds within 8 days. Overall, this is the first antioxidant and immunomodulatory vesicle for diabetic wound healing by scavenging ROS and regulating immune homeostasis, opening new avenues for effective diabetic wound healing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...