Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 242(Pt 4): 125053, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37244329

RESUMO

In this study, a simple and scalable mechanical pretreatment was evaluated as means of enhancing the accessibility of cellulose fibers, with the objective of improving the efficiency of enzymatic reactions for the production of cellulose nanoparticles (CNs). In addition, the effects of enzyme type (endoglucanase - EG, endoxylanase - EX, and a cellulase preparation - CB), composition ratio (0-200UEG:0-200UEX or EG, EX, and CB alone), and loading (0 U-200 U) were investigated in relation to CN yield, morphology, and properties. The combination of mechanical pretreatment and specific enzymatic hydrolysis conditions substantially improved CN production yield, reaching up to 83 %. The production of rod-like or spherical nanoparticles and their chemical composition were highly influenced by the enzyme type, composition ratio, and loading. However, these enzymatic conditions had minimal impact on the crystallinity index (approximately 80 %) and thermal stability (Tmax within 330-355 °C). Overall, these findings demonstrate that mechanical pretreatment followed by enzymatic hydrolysis under specific conditions is a suitable method to produce nanocellulose with high yield and adjustable properties such as purity, rod-like or spherical forms, high thermal stability, and high crystallinity. Therefore, this production approach shows promise in producing tailored CNs with the potential for superior performance in various advanced applications, including, but not limited to, wound dressings, drug delivery, thermoplastic composites, 3D (bio)printing, and smart packaging.


Assuntos
Celulase , Nanopartículas , Celulose/química , Hidrólise , Celulase/química , Endo-1,4-beta-Xilanases/química , Nanopartículas/química
2.
Bioresour Technol ; 342: 125970, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34583112

RESUMO

An integrated biorefining strategy was applied to fractionate Sugarcane bagasse (SCB) into its major constituents, enabling high-yield conversion of the fractionated materials into high-value coproducts alongside cellulosic ethanol. Pilot-scale steam explosion produced a hydrolysate rich in low molecular weight xylooligosaccharides that had a high in vitro efficacy as a prebiotic towards different bifidobacteria. Lignin recovered after alkaline treatment of the steam-exploded SCB was converted into uniform spherical lignin nanoparticles (11.3 nm in diameter) by a green mechanical method. The resulting cellulose was hydrolyzed at 17.5% (w/v) consistency and low enzyme loading (17.5 mg/g) to yield a pure glucose hydrolysate at a high concentration (100 g/L) and a cellulosic solid residue that was defibrillated by disc ultra-refining into homogeneous cellulose nanofibrils (20.5 nm in diameter). Statistical optimization of the cellulosic hydrolysate fermentation led to ethanol production of 67.1 g/L, with a conversion yield of 0.48 g/g and productivity of 1.40 g/L.h.


Assuntos
Nanopartículas , Saccharum , Celulose/metabolismo , Etanol , Fermentação , Glucuronatos , Hidrólise , Lignina/metabolismo , Oligossacarídeos , Prebióticos , Saccharum/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA