Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202410420, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961660

RESUMO

The structural failure of Na2Mn[Fe(CN)6] could not be alleviated with traditional modification strategies through the adjustable composition property of Prussian blue analogues (PBAs), considering that the accumulation and release of stress derived from the MnN6 octahedrons are unilaterally restrained. Herein, a novel application of adjustable composition property, through constructing a coordination competition relationship between chelators and [Fe(CN)6]4- to directionally tune the enrichment of elements, is proposed to restrain structural degradation and induce unconventional energy coupling phenomenon. The non-uniform distribution of elements at the M1 site of PBAs (NFM-PB) is manipulated by the sequentially precipitated Ni, Fe, and Mn according to the Irving-William order. Electrochemically active Fe is operated to accompany Mn, and zero-strain Ni is modulated to enrich at the surface, synergistically mitigating with the enrichment and release of stress and then significantly improving the structural stability. Furthermore, unconventional energy coupling effect, a fusion of the electrochemical behavior between FeLS and MnHS, is triggered by the confined element distribution, leading to the enhanced electrochemical stability and anti-polarization ability. Consequently, the NFM-PB demonstrates superior rate performance and cycling stability. These findings further exploit potentialities of the adjustable composition property and provide new insights into the component design engineering for advanced PBAs.

2.
Food Chem ; 460(Pt 1): 140503, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39053279

RESUMO

The aim of this study was to investigate the distribution pattern and migration pathway of sodium ion in the myofibrillar protein (MP) gel matrix during microwave heating. The results showed that the content of sodium ions in the outer layer of MP gel increased by 47.85% compared with that in the inner layer. In the inner layer of protein gel, the non-covalent disulfide bonds (mainly ε(γ-Glu)-Lys) increased (P < 0.05), which contributed to the formation of a better rigid structure of the protein. The free water content was significantly higher than that of the inner layer (P < 0.05), which was related to the higher mobility of sodium ions. The results of microstructure analysis showed that the outer layer of the MP gel formed a more porous network than the inner layer. This work is expected to give some insights into the development of promising salt-reduced meat products by microwave heating.


Assuntos
Micro-Ondas , Proteínas Musculares , Miofibrilas , Sódio , Água , Água/química , Animais , Miofibrilas/química , Miofibrilas/efeitos da radiação , Proteínas Musculares/química , Sódio/química , Conformação Proteica , Géis/química , Produtos da Carne/análise , Suínos , Temperatura Alta
3.
Sci Total Environ ; 946: 174206, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38914321

RESUMO

Microplastics and metal-based nanoparticles (NPs) are environmental pollutants that have attracted significant attention. However, there have been relatively few studies on the combined pollution of these substances in the soil-plant system. To investigate the environmental impact and interaction mechanisms of these two pollutants, a pot experiment was conducted to examine the effects of soil exposure on peanut growth. The experiment results revealed that polyethylene (PE) had a minimal effect on peanut growth, while CuO NPs significantly inhibited peanut growth. Peanut biomass decreased by over 50 % in all Cu treatments. The presence of PE significantly impacted the dissolution and absorption of CuO NPs. When 0.5 % PE was present, the dissolution and transformation of CuO NPs were limited, resulting in a total Cu concentration of 458 mg/kg. Conversely, when 5 % PE was present, the dissolution and transformation of CuO NPs were promoted, leading to a DTPA-Cu concentration of 141 mg/kg, the highest level observed. The distribution of trace elements in peanut stems also responded to the differences in Cu concentration. Both pollutants significantly disrupted soil bacteria, with CuO NPs having a more pronounced effect than PE. Throughout the entire growth cycle of peanuts, no chemical adsorption occurred between PE and CuO NPs, and CuO NPs had no significant impact on the aging rate of PE. In summary, this study provides insights into the environmental impact and transport mechanisms of composite pollution involving microplastics and metal-based nanoparticles in the soil-peanut system.


Assuntos
Arachis , Cobre , Nanopartículas Metálicas , Microplásticos , Polietileno , Poluentes do Solo , Cobre/toxicidade , Arachis/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade
4.
J Dairy Sci ; 107(8): 5449-5459, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38490559

RESUMO

Milk and dairy products are excellent sources of mineral elements, including Ca, P, Mg, Na, K, and Zn. The purpose of this study was to determine the effect of nonthermal (homogenization) and thermal (heat treatment) treatments on the distribution of mineral elements in 4 milk fractions: fat, casein, whey protein, and aqueous phase. The study results revealed that the distribution of mineral elements (such as Mg and Fe) in fat fractions is extremely low, whereas significant mineral elements such as Ca, Zn, Fe, and Cu are mostly dispersed in casein fractions. For nontreated goat milk, Mo is the only element identified in the whey protein fraction, whereas K and Na are mostly found in the aqueous phase. Mineral element concentrations in fat (K, Zn, and so on) and casein fractions (Fe, Mo, and so on) increased dramatically after homogenization. Homogenization greatly decreased the concentration of mineral elements in the whey protein fraction (Ca, Na, and so on) and aqueous phase (Fe, Cu, and so on). After heat treatment, the element content in the fat fraction and casein fraction increased greatly when compared with raw milk, such as Cu and Mg in the fat fraction, Na and Cu in the whey protein fraction, the concentration of components such as Mg and Na in casein fraction increased considerably. In contrast, after homogenization, Zn in the aqueous phase decreased substantially, whereas Fe increased significantly. Therefore, both homogenization and heat treatment have an effect on the mineral element distribution in goat milk fractions.


Assuntos
Cabras , Leite , Minerais , Animais , Leite/química , Minerais/análise , Caseínas/análise , Proteínas do Soro do Leite/análise
5.
MAGMA ; 37(2): 185-198, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38386153

RESUMO

OBJECTIVE: Conventional single-target field control for matrix gradient coils will add control complexity in MRI spatial encoding, such as designing specialized fields and sequences. This complexity can be reduced by multi-target field control, which is realized by optimizing the coil structure according to target fields. METHODS: Based on the principle of multi-target field control, the X, Y and Z gradient fields can be set as target fields, and all coil elements can then be divided into three groups to generate these fields. An improved simulated annealing algorithm is proposed to optimize the coil element distribution of each group to generate the corresponding target field. In the improved simulated annealing process, two swapping modes are presented, and randomly selected with certain probabilities that are set to 0.25, 0.5 and 0.75, respectively. The flexibility of the final designed structure is demonstrated by a spherical harmonic basis up to the full second order with single-target field control. An experimental platform is built to measure the gradient fields generated by the designed structure with multi-target target control. RESULTS: With three probabilities of swapping modes, three similar coil element distributions are optimized, and their maximum magnetic field errors for generating X, Y and Z gradients are all below 5%. The structure selected for the final design is the one with a probability of 0.75, considering the coil performance and structural symmetry. The maximum error for all target fields generated by single-target field control is also below 5%. The experimental results show that the measured gradient fields along the axes have enough strength and high linearity. CONCLUSIONS: With the proposed improved simulated annealing algorithm and swapping modes, multi-target field control for matrix gradient coils is verified and achieved in this study by optimizing the coil element distribution. Moreover, this study provides a solution to simplify the complexity of controlling the matrix gradient coil in spatial encoding.


Assuntos
Campos Magnéticos , Imageamento por Ressonância Magnética , Desenho de Equipamento , Imageamento por Ressonância Magnética/métodos , Algoritmos
6.
Int J Biol Macromol ; 254(Pt 3): 127948, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37951432

RESUMO

Colloidal lignin particles (CLPs) have sparked various intriguing insights toward bio-polymeric materials and triggered many lignin-featured innovative applications. Here, we report a multi-solvent sequential fractionation methodology integrating green solvents of acetone, 1-butanol, and ethanol to fractionate industrial lignin for CLPs fabrication. Through a rationally designed fractionation strategy, multigrade lignin fractions with variable hydroxyl group contents, molecular weights, and high purity were obtained without altering their original chemical structures. CLPs with well-defined morphology, narrow size distribution, excellent thermal stability, and long-term colloidal stability can be obtained by rational selection of lignin fractions. We further elucidated that trace elements (S, N) were reorganized onto the near-surface area of CLPs from lignin fractions during the formation process in the form of -SO42- and -NH2. This work provides a sustainable and efficient strategy for refining industrial lignin into high-quality fractions and an in-depth insight into the CLPs formation process, holding great promise for enriching the existing libraries of colloidal materials.


Assuntos
Etanol , Lignina , Solventes/química , Lignina/química , Acetona , Fracionamento Químico/métodos
7.
Biomed Mater ; 18(6)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37844570

RESUMO

This study aimed to analyze the physicochemical and histological properties of nanostructured hydroxyapatite and alginate composites produced at different temperatures with and without sintering and implanted in rabbit tibiae. Hydroxyapatite-alginate (HA) microspheres (425-600 µm) produced at 90 and 5 °C without (HA90 and HA5) or with sintering at 1000 °C (HA90S and HA5S) were characterized and applied to evaluate thein vitrodegradation; also were implanted in bone defects on rabbit's tibiae (n= 12). The animals were randomly divided into five groups (blood clot, HA90S, HA5S, HA90, and HA5) and euthanized after 7 and 28 d. X-ray diffraction and Fourier-transform infrared analysis of the non-sintered biomaterials showed a lower crystallinity than sintered materials, being more degradablein vitroandin vivo. However, the sinterization of HA5 led to the apatite phase's decomposition into tricalcium phosphate. Histomorphometric analysis showed the highest (p< 0.01) bone density in the blood clot group, similar bone levels among HA90S, HA90, and HA5, and significantly less bone in the HA5S. HA90 and HA5 groups presented higher degradation and homogeneous distribution of the new bone formation onto the surface of biomaterial fragments, compared to HA90S, presenting bone only around intact microspheres (p< 0.01). The elemental distribution (scanning electron microscope and energy dispersive spectroscopy andµXRF-SR analysis) of Ca, P, and Zn in the newly formed bone is similar to the cortical bone, indicating bone maturity at 28 d. The synthesized biomaterials are biocompatible and osteoconductive. The heat treatment directly influenced the material's behavior, where non-sintered HA90 and HA5 showed higher degradation, allowing a better distribution of the new bone onto the surface of the biomaterial fragments compared to HA90S presenting the same level of new bone, but only on the surface of the intact microspheres, potentially reducing the bone-biomaterial interface.


Assuntos
Durapatita , Trombose , Animais , Coelhos , Durapatita/química , Síncrotrons , Materiais Biocompatíveis/química , Cerâmica , Alginatos/química
8.
Sci Total Environ ; 903: 166608, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37640070

RESUMO

The accumulation, mobilization, and distribution of toxic metal(loid)s in rice are key factors that affect food security and determine bio-utilization patterns. In this study, five soil amendments with different components were used in paddy fields to study the key factors: organic amendments: (1) polyaspartic acid (OA1) and (2) organic fertilizer (OA2); inorganic amendments: (3) kaolinite (IA1) and (4) magnesium slag (IA2); and organic-inorganic composite amendments: (5) modified biochar/quicklime (OIA). Although the Cd and As exhibited opposite chemical dissolution behaviors, IA1/OIA, can simultaneously reduce their accumulation and transfer coefficients in rice tissues, while other amendments only work for one of them. The in situ distribution in grains showed that IA1/OIA changed the original Cd distribution in the lemma and palea, whereas all amendments reduced Cd accumulation in the germ. In contrast, OA1/IA2 amendments led to more As accumulation in the rice husks and bran than in the endosperm center, and the germ had higher As signals. Because of their similar transport pathways and interactions, the concentrations of Cd and As in the grains were correlated with a variety of mineral elements (Fe, Mo, Zn, etc.). Changes in the Cd/As concentration and distribution in rice were achieved through the improvement of soil properties and plant growth behavior through amendments. The application of OIA resulted in the highest immobilization indices, at 82.17 % and 35.34 % for Cd and As, respectively. The Cd/As concentrations in the rice grains were highly positively correlated with extractable-Cd/As in the soil (Cd: R2 = 0.95, As: R2 = 0.93). These findings reveal the migration and distribution mechanisms of Cd and As in the soil-rice system, and thus provide fundamental information for minimizing food safety risk.

9.
Plants (Basel) ; 12(9)2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37176795

RESUMO

Hypersaline environments occur naturally worldwide in arid and semiarid regions or in artificial areas where the discharge of highly saline wastewaters, such as produced water (PW) from oil and gas industrial setups, has concentrated salt (NaCl). Halophytes can tolerate high NaCl concentrations by adopting ion extrusion and inclusion mechanisms at cell, tissue, and organ levels; however, there is still much that is not clear in the response of these plants to salinity and completely unknown issues in hypersaline conditions. Mechanisms of tolerance to saline and hypersaline conditions of four different halophytes (Suaeda fruticosa (L.) Forssk, Halocnemum strobilaceum (Pall.) M. Bieb., Juncus maritimus Lam. and Phragmites australis (Cav.) Trin. ex Steudel) were assessed by analysing growth, chlorophyll fluorescence and photosynthetic pigment parameters, nutrients, and sodium (Na) uptake and distribution in different organs. Plants were exposed to high saline (257 mM or 15 g L-1 NaCl) and extremely high or hypersaline (514, 856, and 1712 mM or 30, 50, and 100 g L-1 NaCl) salt concentrations in a hydroponic floating culture system for 28 days. The two dicotyledonous S. fruticosa and H. strobilaceum resulted in greater tolerance to hypersaline concentrations than the two monocotyledonous species J. maritimus and P. australis. Plant biomass and major cation (K, Ca, and Mg) distributions among above- and below-ground organs evidenced the osmoprotectant roles of K in the leaves of S. fruticosa, and of Ca and Mg in the leaves and stem of H. strobilaceum. In J. maritimus and P. australis the rhizome modulated the reduced uptake and translocation of nutrients and Na to shoot with increasing salinity levels. S. fruticosa and H. strobilaceum absorbed and accumulated elevated Na amounts in the aerial parts at all the NaCl doses tested, with high bioaccumulation (from 0.5 to 8.3) and translocation (1.7-16.2) factors. In the two monocotyledons, Na increased in the root and rhizome with the increasing concentration of external NaCl, dramatically reducing the growth in J. maritimus at both 50 and 100 g L-1 NaCl and compromising the survival of P. australis at 30 g L-1 NaCl and over after two weeks of treatment.

10.
Int J Environ Sci Technol (Tehran) ; 20(7): 7829-7842, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35968156

RESUMO

To ensure the quality and safety of herbs, the content of 54 elements in MOUTAN CORTEX (MC) was determined by the ICP-AES and ICP-MS, and the health risks of Cu, As, Cd, Pb, Hg and rare earth elements (REEs) were assessed. These herbs were collected from 5 producing areas in Anhui Province, China, namely Wuhu, Tongling, Bozhou, Xuancheng and Chizhou. The multi-elements fingerprint identification of MC in Anhui Province was established. The total amount of macro-elements from Wuhu and Tongling is significantly lower than Bozhou. Among all MC from 5 producing areas, the highest content is Ca. Except for Bozhou, the content of macro-elements and REES in the other 4 origins of MC is from highest to lowest: Ca > K > Mg > Al > Fe > Na and Ce > La > Nd > Y > Pr > Er > Yb > Eu > Ho > Tb > Tm > Lu. The chemical forms of Cd in MC from Bozhou with the highest percentage were PH2O of high toxicity and migration, while the other 4 regions were PNaCl of low activity and mobility. There was a great difference in the content of inorganic elements and chemical forms of Cd between the MC produced from the plain (Bozhou) and the hilly areas (Wuhu, Tongling, Chizhou and Xuancheng). Except for Cd, the content of Cu, As, Pb and Hg in MC did not exceed the limit. The results of PTWIFact and ADI for Cd and REEs showed that MC herbs did not pose a risk to human health. Supplementary Information: The online version contains supplementary material available at 10.1007/s13762-022-04402-6.

11.
Ecotoxicol Environ Saf ; 246: 114196, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36252514

RESUMO

Pfaffia glomerata is a candidate for phytoremediation due to its high biomass and high bioaccumulation efficiency of multiple heavy metals. It is essential to further evaluate its tolerance, absorption, transfer, and distribution to multiple heavy metals. In the current study, we evaluated the tolerance, absorption, transfer, and distribution of P. glomerata in a Cd/Pb/Cu/Zn combined-contaminated environment by two hydroponic experiments. The results demonstrated that P. glomerata was not affected by Cd/Pb/Cu/Zn exposure, except for the 50 µM Cd/Pb/Cu/Zn treatment, which significantly decreased the stem biomass. In a single Cd, Pb, Cu, and Zn exposure, the root of P. glomerata absorbed Cd/Pb/Cu/Zn in the order of Cd > Zn > Pb > Cu. Almost all Pb and Cu accumulated in the plant roots and were hardly transferred to the aboveground parts. Therefore, the order of total Cd/Pb/Cu/Zn extraction of a single plant in multiple Cd/Pb/Cu/Zn exposures at the same concentration was Cd > Zn > Pb > Cu. The bioconcentration factor (BCF) of Cd and Zn in roots, stems, and leaves increased with the concentration of Cd and Zn in the solution, and was > 1. In contrast with Cd and Zn, the BCFs of Cu and Pb in the stems and leaves were < 1. The element distribution of Pb, Cu, Zn, and Mn in the stem of P. glomerata was dispersed, indicating that the stem of P. glomerata does not have a detoxification mechanism for distributing metals to the area of low biological activity. The total amount of tartaric acid, critic acid, and DOC secreted by P. glomerata roots decreased with the increase in Cd/Pb/Cu/Zn exposure. However, further investigation is needed to unravel the interaction between the LMWOAs secreted by the root of P. glomerata and heavy metals.


Assuntos
Amaranthaceae , Metais Pesados , Poluentes do Solo , Cádmio , Chumbo , Metais Pesados/análise , Biodegradação Ambiental , Zinco , Poluentes do Solo/análise
12.
Materials (Basel) ; 15(15)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35955147

RESUMO

Yttria-stabilized zirconia (YSZ) is well-known as a material with perfect mechanical, thermal, and electrical properties. It is used for manufacturing various high-temperature components for aerospace and energy generation, as well as wear- and corrosion-resistant devices in medicine. This work investigated the effect of a Y2O3 addition to ZrO2 on the microstructure and mechanical properties of YSZ ceramics produced by one sintering schedule. ZrO2 ceramics doped with 3, 4, 5, 6, 7, and 8 mol% Y2O3 (designated 3YSZ through to 8YSZ) were prepared by using conventional sintering at 1550 °C for 2 h in argon. The effect of yttria content was analyzed with respect to grain size, morphology of the microstructural features, phase composition, parameters of fracture surface, and flexural strength. The 7YSZ ceramics sintered at 1550 °C for 2 h showed the highest level of flexural strength due to the formation of the fine-grained microstructure containing mainly the monoclinic and tetragonal zirconia phases. The fracture micromechanism in the studied YSZ ceramics is discussed.

13.
Materials (Basel) ; 15(16)2022 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-36013903

RESUMO

The quantitative study of the relationship between material composition, microstructure and properties is of great importance for the improvement in material properties. In this study, the continuous data of elemental composition, recrystallization, hardness and undissolved phase distribution of the same sample in the range of 60 to 150 square millimeters were obtained by high-throughput testing instrument. The distribution characteristics and rules of a single data set were analyzed. In addition, each data set was divided into micro-areas according to the corresponding relationship of location, and the mapping between multi-source heterogeneous micro-area data sets was established to analyze and quantify the correlation between material composition, structure and hardness. The conclusions are as follows: (1) the average size of the insoluble phase in the middle of the two materials is larger than that of the surface, but due to the existence of central segregation, the average area of the T4 insoluble phase showed an abnormal decrease; (2) there was positive micro-segregation of Al, Cr, Ti, and Zr elements, and negative micro-segregation of Zn, Cu, and Fe elements in the recrystallized grains of the T5 middle segregation zone; (3) the growth process of the insoluble phase was synchronous with the recrystallization proportion and the size of the recrystallized grains; (4) the composition segregation and recrystallized coarse grains were the main reasons for the formation of low hardness zone in T4 and T5 materials, respectively.

14.
Zhongguo Zhong Yao Za Zhi ; 47(2): 444-452, 2022 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-35178988

RESUMO

In order to evaluate the composition and distribution characteristics of inorganic elements in Laminaria japonica, this study employed inductively coupled plasma mass spectrometry(ICP-MS) to detect the inorganic elements and used high performance liquid chromatography tandem ICP-MS(HPLC-ICP-MS) to determine the content of different arsenic species in L. japonica from diffe-rent origins. Micro X-ray fluorescence(Micro-XRF) was used to determine micro-area distribution of inorganic elements in L. japonica. The results showed that the average content of Mn, Fe, Sr, and Al was high, and that of As and Cr exceeded the limits of the national food safety standard. According to the results of HPLC-ICP-MS, arsenobetaine(AsB) was the main species of As contained in L. japonica. The more toxic inorganic arsenic accounts for a small proportion, whereas its content was 1-4 times of the limit in the national food safety standard. The results of Micro-XRF showed that As, Pb, Fe, Cu, Mn, and Ni were mainly distributed on the surface of L. japonica. Among them, As and Pb had a clear tendency to diffuse from the surface to the inside. The results of the study can provide a basis for the processing as well as the medicinal and edible safety evaluation of L. japonica.


Assuntos
Arsênio , Laminaria , Oligoelementos , Arsênio/análise , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas/métodos , Análise Espectral , Oligoelementos/análise
15.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-927988

RESUMO

In order to evaluate the composition and distribution characteristics of inorganic elements in Laminaria japonica, this study employed inductively coupled plasma mass spectrometry(ICP-MS) to detect the inorganic elements and used high performance liquid chromatography tandem ICP-MS(HPLC-ICP-MS) to determine the content of different arsenic species in L. japonica from diffe-rent origins. Micro X-ray fluorescence(Micro-XRF) was used to determine micro-area distribution of inorganic elements in L. japonica. The results showed that the average content of Mn, Fe, Sr, and Al was high, and that of As and Cr exceeded the limits of the national food safety standard. According to the results of HPLC-ICP-MS, arsenobetaine(AsB) was the main species of As contained in L. japonica. The more toxic inorganic arsenic accounts for a small proportion, whereas its content was 1-4 times of the limit in the national food safety standard. The results of Micro-XRF showed that As, Pb, Fe, Cu, Mn, and Ni were mainly distributed on the surface of L. japonica. Among them, As and Pb had a clear tendency to diffuse from the surface to the inside. The results of the study can provide a basis for the processing as well as the medicinal and edible safety evaluation of L. japonica.


Assuntos
Arsênio/análise , Cromatografia Líquida de Alta Pressão/métodos , Laminaria , Espectrometria de Massas/métodos , Análise Espectral , Oligoelementos/análise
16.
Int J Mol Sci ; 22(19)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34638794

RESUMO

Environmental acclimation ability plays a key role in plant growth, although the mechanism remains unclear. Here, we determined the involvement of Arabidopsis thaliana PLANT DEFENSIN 1 gene AtPDF1.5 in the adaptation to low nitrogen (LN) levels and cadmium (Cd) stress. Histochemical analysis revealed that AtPDF1.5 was mainly expressed in the nodes and carpopodium and was significantly induced in plants exposed to LN conditions and Cd stress. Subcellular localization analysis revealed that AtPDF1.5 was cell wall- and cytoplasm-localized. AtPDF1.5 overexpression significantly enhanced adaptation to LN and Cd stress and enhanced the distribution of metallic elements. The functional disruption of AtPDF1.5 reduced adaptations to LN and Cd stress and impaired metal distribution. Under LN conditions, the nitrate transporter AtNRT1.5 expression was upregulated. Nitrate transporter AtNRT1.8 expression was downregulated when AtPDF1.5 was overexpressed, resulting in enhanced transport of NO3- to shoots. In response to Cd treatment, AtPDF1.5 regulated the expression of metal transporter genes AtHMP07, AtNRAMP4, AtNRAMP1, and AtHIPP3, resulting in higher Cd accumulation in the shoots. We conclude that AtPDF1.5 is involved in the processing or transmission of signal substances and plays an important role in the remediation of Cd pollution and LN adaptation.


Assuntos
Arabidopsis/metabolismo , Cádmio , Nitrogênio/metabolismo , Estresse Fisiológico , Adaptação Fisiológica , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas
17.
Mar Pollut Bull ; 173(Pt A): 112961, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34543931

RESUMO

The Port of Genoa (north-western Mediterranean Sea) receives sediments from two different catchment areas (Bisagno and Polcevera torrents). The aim of the work is to evaluate if Rare Earth Elements (REEs) could be used to identify the two sedimentary inputs and to unravel the origin of inorganic contaminants in an anthropised basin. REE results constitute a baseline for this port. The main REE-bearing minerals are phosphates and zircon. As, Cd, Hg, Pb, and Sn concentrate in the sediments closer to the Bisagno Torrent mouth, and the correlation with Ca and Light-REEs suggests their plausible geological origin. Co, Mn, and Ni maxima lie in the sediments closer to the Polcevera Torrent. Their correlation with Middle-REEs and Mg suggest that ophiolitic rocks could explain their presence. Cr, Cu, V, and Zn do not show a clear correlation with REEs, and their origin probably is a combination of natural and anthropogenic sources.


Assuntos
Mercúrio , Metais Terras Raras , Poluentes Químicos da Água , Monitoramento Ambiental , Sedimentos Geológicos , Mercúrio/análise , Metais Terras Raras/análise , Poluentes Químicos da Água/análise
18.
Materials (Basel) ; 14(16)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34443145

RESUMO

Laser-induced breakdown spectroscopy (LIBS) is a technique which enables the analysis of material components with precision and spatial resolution. Furthermore, the investigation method is comparatively fast which enables illustrating the distribution of elements within the examined material. This opens new possibilities for the investigation of very heterogeneous materials, such as concrete. Concrete consists of cement, water, and aggregates. As most of the transport processes take place exclusively in the hardened cement paste, relevant limit values linked to harmful element contents are specified in relation to the cement mass. When a concrete sample from an existing structure is examined, information on the concrete composition is usually not available. Therefore, assumptions have to be made to convert the element content analyzed in the sample based on the cement content in the sample. This inevitably leads to inaccuracies. Therefore, a method for distinction between cement paste and aggregates is required. Cement and aggregate components are chemically very close to each other and therefore, complex for classification. This is why the consideration of a single distinguishing feature is not sufficient. In this paper, a machine learning method is described and has been used to automate the distinction of the cement paste and aggregates of the LIBS data to receive reliable information of this technique. The presented approach could potentially be employed for many heterogeneous materials with the same complexity to quantify the arbitrary substances.

19.
Waste Manag ; 126: 652-663, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33872974

RESUMO

Although municipal solid waste incineration bottom ash (BA) has the potential to be used as a metal resource, it raises concerns about the potential release of harmful elements into the environment. Element distribution in terms of particle size and density should be assessed to determine the fractions for the metal resources' recovery and to remove harmful elements. For this purpose, this study proposed a series of sorting processes based on the distribution of 25 elements in the sorted fractions by sieving, magnetic separation, air table sorting, and milling from dry BA < 8 mm. The Ca, Na, Mg, P, S, Cl, and Ti contents exhibited a decreasing tendency with increasing particle density and could affect the formation of low-density particles. The highest density fraction of non-magnetic components of 0.5-8 mm had abundant metal particles and recorded high Cu, Zn, Cr, Ni, Mo, Fe, Pb, Sb, and Au contents. In particular, the Cu (132000 mg-Cu/kg) and Zn (43000 mg-Zn/kg) contents demonstrated potential as metal resources. The fraction contained considerable proportions of Mo (77%), Cd (46%), Cu (39%), Zn (34%), Pb (26%), Au (40%), and Ag (18%) of the total amount. After milling and sieving of the highest density fraction, a substantial amount of Cd (44%), Cu (18%), Zn (12%), Pb (13%), and Ag (11%) were found in residual minerals; they could become harmful elements when recycled for construction purposes. The results show that air table sorting can separate metal resources and harmful elements before milling of BA.


Assuntos
Incineração , Metais Pesados , Cinza de Carvão , Metais Pesados/análise , Tamanho da Partícula , Resíduos Sólidos
20.
Ecotoxicol Environ Saf ; 214: 112113, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33690006

RESUMO

The main purpose of this work is to thoroughly describe the implementation protocol of laser-induced breakdown spectroscopy (LIBS) method in the plant analysis. Numerous feasibility studies and recent progress in instrumentation and trends in chemical analysis make LIBS an established method in plant bioimaging. In this work, we present an easy and straightforward phytotoxicity case study with a focus on LIBS method. We intend to demonstrate in detail how to manipulate with plants after exposures and how to prepare them for analyses. Moreover, we aim to achieve 2D maps of spatial element distribution with a good resolution without any loss of sensitivity. The benefits of rapid, low-cost bioimaging are highlighted. In this study, cabbage (Brassica oleracea L.) was treated with an aqueous dispersion of photon-upconversion nanoparticles (NaYF4 doped with Yb3+ and Tm3+ coated with carboxylated silica shell) in a hydroponic short-term toxicity test. After a 72-hour plant exposure, several macroscopic toxicity end-points were monitored. The translocation of Y, Yb, and Tm across the whole plant was set by employing LIBS with a lateral resolution 100 µm. The LIBS maps of rare-earth elements in B.oleracea plant grown with 50 µg/mL nanoparticle-treated and ion-treated exposures showed the root as the main storage, while the transfer via stem into leaves was minimal. On the contrary, the LIBS maps of plants exposed to the 500 µg/mL nanoparticle-treated and ion-treated uncover slightly different trends, nanoparticles as well as ions were transferred through the stem into leaves. However, the main storage organ was a root as well.


Assuntos
Brassica/metabolismo , Fluoretos/administração & dosagem , Nanopartículas/administração & dosagem , Dióxido de Silício/administração & dosagem , Túlio/toxicidade , Itérbio/administração & dosagem , Ítrio/administração & dosagem , Lasers , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Caules de Planta/metabolismo , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA