RESUMO
In this work is presented the development of a method for As and Se determination in crude palm oil samples by hydride generation atomic fluorescence spectrometry and Hg by cold vapor atomic fluorescence spectrometry after ultrasound-assisted emulsification and extraction induced by emulsion breaking (EIEB). The optimization of the method was carried out by multivariate designs. The developed method has presented limits of quantification (LOQ) of 0.72, 0.12, and 1.5 µg L-1 for As, Hg, and Se, respectively. The precisions of the proposed method expressed as repeatability were 0.92, 2.2, and 3.7% RSD for 2 µg L-1 (n = 10) of As, Hg and Se, respectively. The developed methodology was applied in palm oil samples collected in the Bahia State. Concentrations (µg L-1) found in the samples were between Assuntos
Arsênio/análise
, Emulsões/química
, Análise de Alimentos/métodos
, Mercúrio/análise
, Óleo de Palmeira/análise
, Selênio/análise
, Fracionamento Químico/métodos
, Análise de Alimentos/estatística & dados numéricos
, Contaminação de Alimentos
, Gases/química
, Limite de Detecção
, Análise Multivariada
, Óleo de Palmeira/química
, Espectrometria de Fluorescência/métodos
, Espectrofotometria Atômica/métodos
RESUMO
The present paper reports on the development of a novel extraction induced by emulsion breaking (EIEB) method for the determination of chloride in crude oils. The proposed method was based on the formation and breaking of oil-in-water emulsions with the samples and the consequential transference of the highly water-soluble chloride to the aqueous phase during emulsion breaking, which was achieved by centrifugation. The determination of chloride in the extracts was performed by ion chromatography (IC) with conductivity detection. Several parameters (oil phase:aqueous phase ratio, crude oil:mineral oil ratio, shaking time and type and concentration of surfactant) that could affect the performance of the method were evaluated. Total extraction of chloride from samples could be achieved when 1.0g of oil phase (0.5g of sample+0.5g of mineral oil) was emulsified in 5mL of a 2.5% (m/v) solution of Triton X-114. The obtained emulsion was shaken for 60min and broken by centrifugation for 5min at 5000rpm. The separated aqueous phase was collected, filtered and diluted before analysis by IC. Under these conditions, the limit of detection was 0.5µgg(-1) NaCl and the limit of quantification was 1.6µgg(-1) NaCl. We applied the method to the determination of chloride in six Brazilian crude oils and the results did not differ statistically from those obtained by the ASTM D6470 method when the paired Student-t-test, at 95% confidence level, was applied.
Assuntos
Cloretos/análise , Cromatografia/métodos , Petróleo/análise , Brasil , Cloretos/química , Emulsões , Octoxinol , Polietilenoglicóis/química , Cloreto de Sódio/análise , Cloreto de Sódio/química , Tensoativos/análise , Tensoativos/química , Água/químicaRESUMO
This work reports the development of a novel extraction method for total Hg determination in oil samples. After extracting Hg from samples it was quantified in the extracts by cold vapor atomic absorption spectrometry (CV-AAS), employing a laboratory-made gas-liquid separator (GLS) and NaBH4 as reducing agent. The extraction of Hg from samples was carried out by extraction induced by emulsion breaking (EIEB), which is based on the formation and breaking of water-in-oil emulsion between the oil samples and an extractant solution containing an emulsifying agent (surfactant) and nitric acid. Operational parameters of the GLS were evaluated in order to set the best performance of the measurement system. In these studies it was proven that the volume of sample and the concentration of HCl added to the sample extracts had significant influence on Hg response. The best conditions were achieved by adding 0.5 mL of a 0.3 mol L(-1) HCl solution on 1 mL of sample extract. The extraction conditions were also optimized. The highest efficiency was observed when 4 mL of a solution containing 2.5% triton X-100 and 15% v/v HNO3 were employed for the extraction of Hg contained in 20 mL of sample. Emulsion breaking was performed by heating at 80 °C and took approximately 20 min. The limit of quantification of the method was 1.9 µg L(-1) and recovery percentages between 80% and 103% were observed when spiked samples (2 and 10 µg L(-1)) of diesel oil, biodiesel and mineral oil were analyzed.
RESUMO
This work proposes a novel method for the determination of trace concentrations of Cu, Mn and Ni in biodiesel samples by electrothermal atomic absorption spectrometry. In order to overcome problems related to the organic matrix in the direct introduction of the samples, a new extraction approach was investigated. The method was based on the extraction induced by emulsion breaking, in which metals were transferred from the biodiesel to an acid aqueous phase after formation and breaking of a water-in-oil emulsion prepared by mixing the biodiesel sample with an aqueous solution containing surfactant and nitric acid. Several parameters that could influence the performance of the system were evaluated. Quantitative extractions of the analytes were obtained when the extraction was performed using an emulsifier solution containing 2.1 mol L(-1) of HNO3 and 7% m/v of Triton X-100. The extraction time had remarkable influence on the efficiency of the process, being necessary an agitation time of 60 min to achieve maximum extraction. The limits of quantification were below 1 µg L(-1) for the three analytes under study. The accuracy of the method was tested by application of a recovery test (recovery percentages between 89% and 109% were observed) and by comparison with a well-established method, taken as reference.