Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
1.
Molecules ; 29(14)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39064952

RESUMO

The first step in comprehending the properties of Au10 clusters is understanding the lowest energy structure at low and high temperatures. Functional materials operate at finite temperatures; however, energy computations employing density functional theory (DFT) methodology are typically carried out at zero temperature, leaving many properties unexplored. This study explored the potential and free energy surface of the neutral Au10 nanocluster at a finite temperature, employing a genetic algorithm coupled with DFT and nanothermodynamics. Furthermore, we computed the thermal population and infrared Boltzmann spectrum at a finite temperature and compared it with the validated experimental data. Moreover, we performed the chemical bonding analysis using the quantum theory of atoms in molecules (QTAIM) approach and the adaptive natural density partitioning method (AdNDP) to shed light on the bonding of Au atoms in the low-energy structures. In the calculations, we take into consideration the relativistic effects through the zero-order regular approximation (ZORA), the dispersion through Grimme's dispersion with Becke-Johnson damping (D3BJ), and we employed nanothermodynamics to consider temperature contributions. Small Au clusters prefer the planar shape, and the transition from 2D to 3D could take place at atomic clusters consisting of ten atoms, which could be affected by temperature, relativistic effects, and dispersion. We analyzed the energetic ordering of structures calculated using DFT with ZORA and single-point energy calculation employing the DLPNO-CCSD(T) methodology. Our findings indicate that the planar lowest energy structure computed with DFT is not the lowest energy structure computed at the DLPN0-CCSD(T) level of theory. The computed thermal population indicates that the 2D elongated hexagon configuration strongly dominates at a temperature range of 50-800 K. Based on the thermal population, at a temperature of 100 K, the computed IR Boltzmann spectrum agrees with the experimental IR spectrum. The chemical bonding analysis on the lowest energy structure indicates that the cluster bond is due only to the electrons of the 6 s orbital, and the Au d orbitals do not participate in the bonding of this system.

2.
Polymers (Basel) ; 16(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38891417

RESUMO

Plasma-Synthesized Polypyrrole (PSPy) has been reported as a biomaterial suitable for cell growth in vitro and in vivo. An experimental duplicate was carried out that showed the growth of cardiomyocytes with PSPy, following a protocol previously reported by the working group. The cardiomyocytes cultured with the biomaterial retained their native morphological characteristics, a fundamental key to improving cardiac cell therapy procedures. Such observations motivated us to investigate the molecular characteristics of the biomaterial and the type of interactions that could be occurring (mainly electrostatic, hydrogen bonds, and non-polar). Additionally, PSPy has been studied to establish the probable mechanisms of action of the biomaterial, in particular, its action on a group of cell membrane proteins, integrins, which we know participate in the adhesion of cells to the extracellular matrix, in adhesion between cells and as bidirectional signal transducer mechanisms. In this work, we carried out studies of the interactions established between cardiac integrins α2ß1 and α5ß1 with different PSPy models by molecular docking studies and binding free energies (ΔGb) calculations. The models based on a previously reported PSPy molecule have three variable terminal chemical groups, with the purpose of exploring the differences in the type of interaction that will be established by modifying the position of an amino (-NH2), a hydroxyl (-OH), and a nitrile (C≡N) in (fixed) groups, as well as the length of the terminal chains (a long/short -NH2). A model with short chains for the -OH and -NH2 (lateral) group was the model with the best interactions with cardiac integrins. We experimentally verified the direct interaction of cardiomyocytes with the PSPy biomaterial observed in rat primary cultures, allowing us to validate the favorable interactions predicted by the computational analysis.

3.
Biotechnol Bioeng ; 121(9): 2728-2741, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38837223

RESUMO

Peroxyacid synthesis is the first step in Prilezhaev epoxidation, which is an industrial method to form epoxides. Motivated by the development of a kinetic model as a tool for solvent selection, the effect of solvent type and acid chain length on the lipase-catalyzed peroxyacid synthesis was studied. A thermodynamic activity-based ping-pong kinetic expression was successfully applied to predict the effect of the reagent loadings in hexane. The activity-based reaction quotients provided a prediction of solvent-independent equilibrium constants. However, this strategy did not achieve satisfactory estimations of initial rates in solvents of higher polarity. The lack of compliance with some assumptions of this methodology could be confirmed through molecular dynamics calculations i.e. independent solvation energies and lack of solvent interaction with the active site. A novel approach is proposed combining the activity-based kinetic expression and the free binding energy of the solvent with the active site to predict kinetics upon solvent change. Di-isopropyl ether generated a strong interaction with the enzyme's active site, which was detrimental to kinetics. On the other hand, toluene or limonene gave moderate interaction with the active site rendering improved catalytic yield compared with less polar solvents, a finding sharpened when peroctanoic acid was produced.


Assuntos
Lipase , Simulação de Dinâmica Molecular , Solventes , Solventes/química , Lipase/química , Lipase/metabolismo , Cinética , Compostos de Epóxi/química , Compostos de Epóxi/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo
4.
Nano Lett ; 24(17): 5270-5276, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38647381

RESUMO

We introduce a Molecular Theory for Compressible Fluids (MOLT-CF) that enables us to compute free energies and other thermodynamic functions for nanoparticle superlattices with any solvent content, including the dry limit. Quantitative agreement is observed between MOLT-CF and united-atom molecular dynamics simulations performed to assess the reliability and precision of the theory. Among other predictions, MOLT-CF shows that the amount of solvent within the superlattice decreases approximately linearly with its vapor pressure and that in the late stages of drying, solvent-filled voids form at lattice interstitials. Applied to single-component superlattices, MOLT-CF predicts fcc-to-bcc Bain transitions for decreasing vapor pressure and for increasing ligand length, both in agreement with experimental results. We explore the stability of other single-component phases and show that the C14 Frank-Kasper phase, which has been reported in experiments, is not a global free-energy minimum. Implications for precise assembly and prediction of multicomponent nanoparticle systems are discussed.

5.
J Mol Model ; 30(4): 107, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38492112

RESUMO

CONTEXT: Nucleophilic substitution reactions of aliphatic amines with alkyl halides represent a simple and direct mechanism for obtaining higher-order aliphatic amines. However, it is well known that these reactions suffer from low selectivity due to multiple alkylations, which is attributed to the higher reactivity of the newly formed amine. In order to provide a detailed explanation for this kind of system, we have investigated the reactivity of primary and secondary amines with 1-bromopropane and 2-bromopropane. The free energy profile in acetonitrile solution was obtained and a detailed microkinetic analysis was needed to analyze this complex reaction system. We have found that the product of the first alkylation is an ion pair corresponding to the protonated secondary amine and the bromide ion, which can transfer the proton to the reactant primary amine. Then, the newly formed secondary amine can also react, leading to a second alkylation to produce a tertiary protonated amine. Our modeling points out that both the proton transfer equilibria and the similar reactivity of the primary and secondary amines produce reduced selectivity. The proton transfer equilibria also contribute to slowing down the kinetics of the first alkylation. METHODS: The exploration of the mechanism was done by geometry optimization using the CPCM/X3LYP/ma-def2-SVP method, followed by harmonic frequency calculation at this same level of theory. A composite approach was used to obtain the free energy profile, using the more accurate ωB97X-D3/ma-def2-TZVPP level of theory for electronic energy and the SMD model for the solvation free energy. These calculations were performed with the ORCA 4 program. The detailed microkinetic analysis was done using the Kintecus program.

6.
Methods Mol Biol ; 2741: 207-238, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38217656

RESUMO

Molecular dynamics simulations have proved extremely useful in investigating the functioning of proteins with atomic-scale resolution. Many applications to the study of RNA also exist, and their number increases by the day. However, implementing MD simulations for RNA molecules in solution faces challenges that the MD practitioner must be aware of for the appropriate use of this tool. In this chapter, we present the fundamentals of MD simulations, in general, and the peculiarities of RNA simulations, in particular. We discuss the strengths and limitations of the technique and provide examples of its application to elucidate small RNA's performance.


Assuntos
Simulação de Dinâmica Molecular , Proteínas , RNA Mensageiro , Proteínas/metabolismo , RNA/genética , Conformação Proteica
7.
J Biomol Struct Dyn ; 42(6): 3128-3144, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37216328

RESUMO

The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) belongs to the glucagon/secretin family. PACAP interacts with the pituitary adenylate cyclase-activating polypeptide receptor type 1 (PAC1) and vasoactive intestinal peptide receptors 1 and 2 (VPAC1 and VPAC2), exhibiting functions in the immune, endocrine, and nervous systems. This peptide is upregulated in numerous instances of brain injury, acting as a neuroprotective agent. It can also suppress HIV-1 and SARS-CoV-2 viral replication in vitro. This work aimed to identify, in each peptide-receptor system, the most relevant residues for complex stability and interaction energy communication via Molecular Dynamics (MD), Free Energy calculations, and Protein-energy networks, thus revealing in detail the underlying mechanisms of activation of these receptors. Hydrogen bond formation, interaction energies, and computational alanine scanning between PACAP and its receptors showed that His1, Asp3, Arg12, Arg14, and Lys15 are crucial to the peptide's stability. Furthermore, several PACAP interactions with structurally conserved positions deemed necessary in GPCR B1 activation, including Arg2.60, Lys2.67, and Glu7.42, were significant for the peptide's stability within the receptors. According to the protein-energy network, the connection between Asp3 of PACAP and the receptors' conserved Arg2.60 represents a critical energy communication hub in all complexes. Additionally, the ECDs of the receptors were also found to function as energy communication hubs for PACAP. Although the overall binding mode of PACAP in the three receptors was found to be highly conserved, Arg12 and Tyr13 of PACAP were more prominent in complex with PAC1, while Ser2 of PACAP was with VPAC2. The detailed analyses performed in this work pave the way for using PACAP and its receptors as therapeutic targets.Communicated by Ramaswamy H. Sarma.


Assuntos
Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Receptores do Hormônio Hipofisário , Simulação de Dinâmica Molecular , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Receptores do Hormônio Hipofisário/química , Receptores do Hormônio Hipofisário/metabolismo , Sistema Nervoso
8.
Molecules ; 28(19)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37836714

RESUMO

This study explores the potential inhibitory activity of alkaloids, a class of natural compounds isolated from Brazilian biodiversity, against the mJHBP enzyme of the Aedes aegypti mosquito. This mosquito is a significant vector of diseases such as dengue, zika, and chikungunya. The interactions between the ligands and the enzyme at the molecular level were evaluated using computational techniques such as molecular docking, molecular dynamics (MD), and molecular mechanics with generalized Born surface area (MMGBSA) free energy calculation. The findings suggest that these compounds exhibit a high binding affinity with the enzyme, as confirmed by the binding free energies obtained in the simulation. Furthermore, the specific enzyme residues that contribute the most to the stability of the complex with the compounds were identified: specifically, Tyr33, Trp53, Tyr64, and Tyr129. Notably, Tyr129 residues were previously identified as crucial in the enzyme inhibition process. This observation underscores the significance of the research findings and the potential of the evaluated compounds as natural insecticides against Aedes aegypti mosquitoes. These results could stimulate the development of new vector control agents that are more efficient and environmentally friendly.


Assuntos
Aedes , Dengue , Inseticidas , Infecção por Zika virus , Zika virus , Animais , Humanos , Controle de Mosquitos/métodos , Dengue/prevenção & controle , Brasil , Simulação de Acoplamento Molecular , Mosquitos Vetores , Inseticidas/farmacologia
9.
Mitochondrion ; 73: 30-50, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37739243

RESUMO

Allotopic expression is the functional transfer of an organellar gene to the nucleus, followed by synthesis of the gene product in the cytosol and import into the appropriate organellar sub compartment. Here, we focus on mitochondrial genes encoding OXPHOS subunits that were naturally transferred to the nucleus, and critically review experimental evidence that claim their allotopic expression. We emphasize aspects that may have been overlooked before, i.e., when modifying a mitochondrial gene for allotopic expression━besides adapting the codon usage and including sequences encoding mitochondrial targeting signals━three additional constraints should be considered: (i) the average apparent free energy of membrane insertion (µΔGapp) of the transmembrane stretches (TMS) in proteins earmarked for the inner mitochondrial membrane, (ii) the final, functional topology attained by each membrane-bound OXPHOS subunit; and (iii) the defined mechanism by which the protein translocator TIM23 sorts cytosol-synthesized precursors. The mechanistic constraints imposed by TIM23 dictate the operation of two pathways through which alpha-helices in TMS are sorted, that eventually determine the final topology of membrane proteins. We used the biological hydrophobicity scale to assign an average apparent free energy of membrane insertion (µΔGapp) and a "traffic light" color code to all TMS of OXPHOS membrane proteins, thereby predicting which are more likely to be internalized into mitochondria if allotopically produced. We propose that the design of proteins for allotopic expression must make allowance for µΔGapp maximization of highly hydrophobic TMS in polypeptides whose corresponding genes have not been transferred to the nucleus in some organisms.


Assuntos
Mitocôndrias , Proteínas de Saccharomyces cerevisiae , Mitocôndrias/genética , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Genes Mitocondriais , Transporte Proteico , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
Molecules ; 28(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37446721

RESUMO

The field of soft matter teems with molecules and aggregates of molecules that have internal size-modulating degrees of freedom. Proteins, peptides, microgels, polymers, micelles, and even some colloids can exist in multiple-often just two dominating-states with different effective sizes, where size can refer to the volume or to the cross-sectional area for particles residing on surfaces. The size-dependence of their accessible states renders the behavior of these particles pressure-sensitive. The Bragg-Williams model is among the most simple mean-field methods to translate the presence of inter-particle interactions into an approximate phase diagram. Here, we extend the Bragg-Williams model to account for the presence of particles that are immersed in a solvent and exist in two distinct states, one occupying a smaller and the other one a larger size. The basis of the extension is a lattice-sublattice approximation that we use to host the two size-differing states. Our model includes particle-solvent interactions that act as an effective surface tension between particles and solvent and are ignorant of the state in which the particles reside. We analyze how the energetic preference of the particles for one or the other state affects the phase diagrams. The possibility of a single phase-two phases-single phase sequence of phase transitions as a function of increasing temperature is demonstrated.


Assuntos
Coloides , Micelas , Coloides/química , Polímeros/química , Temperatura , Solventes
11.
J Comput Aided Mol Des ; 37(9): 407-418, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37378817

RESUMO

Kallikrein 6 (KLK6) is an attractive drug target for the treatment of neurological diseases and for various cancers. Herein, we explore the accuracy and efficiency of different computational methods and protocols to predict the free energy of binding (ΔGbind) for a series of 49 inhibitors of KLK6. We found that the performance of the methods varied strongly with the tested system. For only one of the three KLK6 datasets, the docking scores obtained with rDock were in good agreement (R2 ≥ 0.5) with experimental values of ΔGbind. A similar result was obtained with MM/GBSA (using the ff14SB force field) calculations based on single minimized structures. Improved binding affinity predictions were obtained with the free energy perturbation (FEP) method, with an overall MUE and RMSE of 0.53 and 0.68 kcal/mol, respectively. Furthermore, in a simulation of a real-world drug discovery project, FEP was able to rank the most potent compounds at the top of the list. These results indicate that FEP can be a promising tool for the structure-based optimization of KLK6 inhibitors.


Assuntos
Descoberta de Drogas , Simulação de Dinâmica Molecular , Termodinâmica , Entropia , Simulação de Acoplamento Molecular , Ligação Proteica , Ligantes
12.
J Biomol Struct Dyn ; : 1-12, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37325852

RESUMO

Phytases [myo-inositol(1,2,3,4,5,6) hexakisphosphate phosphohydrolases] are phytate-specific phosphatases not present in monogastric animals. Nevertheless, they are an essential supplement to feeding such animals and for human special diets. It is crucial, hence, the biotechnological use of phytases with intrinsic stability and activity at the acid pHs from gastric environments. Here we use Metadynamics (METADY) simulations to probe the conformational space of the Aspergillus nidulans phytase and the differential effects of pH and glycosylation in this same space. The results suggest that strategic combinations of pH and glycosylation affect the stability of native-like conformations and alternate these structures from a metastable to a stable profile. Furthermore, the protein segments previously reported as more thermosensitive in phytases from this family present a pivotal role in the conformational changes at different conditions, especially H2, H5-7, L8, L10, L12, and L17. Also, the glycosylations and the pH-dependent charge balance modulate the mobility and interactions at these same regions, with consequences for the surface solvation and active site exposition. Finally, although the glycosylations have stabilized the native structure and improved the substrate docking at all the studied pHs, the data suggest a higher phytate receptivity at catalytic poses for the unglycosylated structure at pH 6.5 and the glycosylated one at pH 4.5. This behavior agrees with the exact change in optimum pH reported for this enzyme, expressed on low or high glycosylating systems. We hope the results and insights presented here will be helpful in future approaches for rational engineering of technologically promising phytases and intelligent planning of their heterologous expression systems and conditions for use.Communicated by Ramaswamy H. Sarma.

13.
Protein Sci ; 32(7): e4689, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37252686

RESUMO

The flexibility of the ATP synthase's ß subunit promotes its role in the ATP synthase rotational mechanism, but its domains stability remains unknown. A reversible thermal unfolding of the isolated ß subunit (Tß) of the ATP synthase from Bacillus thermophilus PS3, tracked through circular dichroism and molecular dynamics, indicated that Tß shape transits from an ellipsoid to a molten globule through an ordered unfolding of its domains, preserving the ß-sheet residual structure at high temperature. We determined that part of the stability origin of Tß is due to a transversal hydrophobic array that crosses the ß-barrel formed at the N-terminal domain and the Rossman fold of the nucleotide-binding domain (NBD), while the helix bundle of the C-terminal domain is the less stable due to the lack of hydrophobic residues, and thus the more flexible to trigger the rotational mechanism of the ATP synthase.


Assuntos
Temperatura Alta , Simulação de Dinâmica Molecular , Estrutura Secundária de Proteína , Trifosfato de Adenosina/química , Dicroísmo Circular , Dobramento de Proteína , Desnaturação Proteica
14.
J Mol Graph Model ; 122: 108491, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37126909

RESUMO

The search of new materials having suitable characteristics to trap hydrogen for fuel applications is greatly challenging due to the stringent requirements that such materials must meet. In this sense, with the aid of computational chemistry, significant advances can be achieved. The present work explores the adsorption of hydrogen molecules by lithium clusters (Lin, where n = 1-6) coordinated to a graphitic carbon nitride (heptazine, gC3N4) cavity. The study was conducted using the density functional theory (M06-2X-D3) in combination with the def2-TZVP basis set. Our results suggest that lithium atoms in the gC3N4-cavity can coordinate up to 10 hydrogen molecules with bond energies in the range -0.10 to -0.19 eV. The [gC3N4Li5]+ and [gC3N4Li6] systems resulted to be the most promising in terms of lithium coordination. They feature the highest stabilization energies for hydrogen adsorption. According to the calculated Gibbs free energies for these systems, H2 adsorption remains a spontaneous process even at 400 K.


Assuntos
Hidrogênio , Lítio , Hidrogênio/química , Lítio/química , Adsorção , Íons
15.
ACS Chem Neurosci ; 14(11): 2049-2059, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37192400

RESUMO

Today, it is widely accepted that intrinsic disorder is strongly related to the cell cycle, during mitosis, differentiation, and apoptosis. Of particular interest are hybrid proteins possessing both structured and unstructured domains that are critical in human health and disease, such as α-synuclein. In this work, we describe how α-synuclein interacts with the nascent fusion pore as it evolves toward expansion. We unveil the key role played by its intrinsically disordered region as a thermodynamic regulator of the nucleation-expansion energy barrier. By analyzing a truncated variant of α-synuclein that lacks the disordered region, we find that the landscape of protein interactions with PIP2 and POPS lipids is highly altered, ultimately increasing the energy cost for the fusion pore to transit from nucleation to expansion. We conclude that the intrinsically disordered region in full-length α-synuclein recognizes and allocates pivotal protein:lipid interactions during membrane remodeling in the first stages of the fusion pore.


Assuntos
alfa-Sinucleína , Humanos , alfa-Sinucleína/metabolismo , Termodinâmica
16.
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1550813

RESUMO

Leishmaniasis continues to be a neglected tropical disease, affecting people and animals and causing significant economic losses. Therefore, there is interest in the study and evaluation of new drug targets. In fact, it has been shown that by interfering with lysine-reading proteins such as bromodomain (BMD) there is a decrease in parasite survival. In this study, we researched the dynamics and energetics of the Leishmania donovani BMD in complex with bromosporin, which is considered to be a pan-inhibitor of BMDs, with the aim of understanding the molecular recognition mechanism. Molecular dynamics (MD) and non-equilibrium free energy calculation guided by steered molecular dynamics (SMD) simulations showed that the BMD has three flexible amino acid regions and bromosporin exhibiting various recognition states during the interaction. These results corroborate the promiscuity of bromosporin for energetically favourable sites, with the possibility of expanding its inhibition to other bromodomains. Furthermore, these results suggest that Van der Waals interactions have more relevance for complex recognition and residues ASN-87 and TRP-93 are key in forming hydrophobic and H-bond interactions, respectively. This research provides new insights for understanding the recognition mechanism, dynamics and energetics of the complex for the development of new therapeutic strategies.


La leishmaniasis sigue siendo una enfermedad tropical desatendida, que afecta a personas y animales y causa importantes pérdidas económicas. De ahí el interés por estudiar y evaluar nuevas dianas farmacológicas. De hecho, se ha demostrado que al interferir con proteínas lectoras de lisina como el bromodominio ("bromodomain", BMD) se produce una disminución de la supervivencia del parásito. En este artículo estudiamos la dinámica y la energética del BMD de Leishmania donovani en complejo con bromosporina, que se considera un pan-inhibidor de BMD, con el objetivo de comprender el mecanismo de reconocimiento molecular. Las simulaciones de dinámica molecular (DM) y el cálculo de energía libre de no-equilibrio guiado por dinámica molecular de estiramiento (DMS) mostraron que BMD tiene tres regiones de aminoácidos flexibles y la bromosporina presenta varios estados de reconocimiento durante la interacción. Estos resultados corroboran la promiscuidad de la bromosporina por sitios energéticamente favorables, siendo posible expandir su inhibición a otros bromodominios. Además, los resultados sugieren que las interacciones de Van der Waals tienen más relevancia para el reconocimiento del complejo y los residuos ASN-87 y TRP-93 son clave en la formación de interacciones hidrofóbicas y de puentes de hidrógeno, respectivamente. Esta investigación proporciona nuevos conocimientos para comprender el mecanismo de reconocimiento molecular, la dinámica y la energética del complejo para el desarrollo de nuevas estrategias terapéuticas.


A leishmaniose continua a ser uma doença tropical negligenciada, que afeta os seres humanos e os animais e causa perdas econômicas significativas. Daí o interesse em estudar e avaliar novos alvos de medicamentos. De fato, a interferência com proteínas leitoras de lisina, como o bromo domínio ("bromodomain", BMD), tem demonstrado diminuir a sobrevivência do parasita. Neste trabalho, estudamos a dinâmica e a energética do BMD de Leish-mania donovani em complexo com a bro-mosporina, considerada um pan-inibidor da BMDs, com o objetivo de compreender o mecanismo de reconhecimento molecular. As simulações de dinâmica molecular (MD) e cálculo de energia livre de não-equilíbrio guiada por dinâmica molecular esticamento (MDS) mostraram que o BMD tem três regiões de aminoácidos flexíveis e que a bromosporina apresenta vários estados de reconhecimento durante a interação. Esses resultados corroboram a promiscuidade da bromosporina para locais energeticamente favoráveis, possibilitando a expansão de sua inibição para outros bromodomínios. Além disso, os resultados sugerem que as interações de Van der Waals são mais relevantes no momento do reconhecimento do complexo e os resíduos ASN-87 e TRP-93 são fundamentais na formação de interações hidrofóbicas e de ligações de hidrogênio, respectivamente. Essa pesquisa fornece novos insights para compreender o mecanismo de reconhecimento, a dinâmica e a energética do complexo para o desenvolvimento de novas estratégias terapêuticas.

17.
Comput Biol Chem ; 103: 107830, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36812825

RESUMO

The correct evaluation of ligand binding free energies by computational methods is still a very challenging active area of research. The most employed methods for these calculations can be roughly classified into four groups: (i) the fastest and less accurate methods, such as molecular docking, designed to sample a large number of molecules and rapidly rank them according to the potential binding energy; (ii) the second class of methods use a thermodynamic ensemble, typically generated by molecular dynamics, to analyze the endpoints of the thermodynamic cycle for binding and extract differences, in the so-called 'end-point' methods; (iii) the third class of methods is based on the Zwanzig relationship and computes the free energy difference after a chemical change of the system (alchemical methods); and (iv) methods based on biased simulations, such as metadynamics, for example. These methods require increased computational power and as expected, result in increased accuracy for the determination of the strength of binding. Here, we describe an intermediate approach, based on the Monte Carlo Recursion (MCR) method first developed by Harold Scheraga. In this method, the system is sampled at increasing effective temperatures, and the free energy of the system is assessed from a series of terms W(b,T), computed from Monte Carlo (MC) averages at each iteration. We show the application of the MCR for ligand binding with datasets of guest-hosts systems (N = 75) and we observed that a good correlation is obtained between experimental data and the binding energies computed with MCR. We also compared the experimental data with an end-point calculation from equilibrium Monte Carlo calculations that allowed us to conclude that the lower-energy (lower-temperature) terms in the calculation are the most relevant to the estimation of the binding energies, resulting in similar correlations between MCR and MC data and the experimental values. On the other hand, the MCR method provides a reasonable view of the binding energy funnel, with possible connections with the ligand binding kinetics, as well. The codes developed for this analysis are publicly available on GitHub as a part of the LiBELa/MCLiBELa project (https://github.com/alessandronascimento/LiBELa).

18.
Pathogens ; 12(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36678426

RESUMO

To understand whether protein Tv-PSP1 from Trichomonas vaginalis recognizes mRNA parasite stem-loop structures, we conducted REMSA and intrinsic fluorescence assays. We found the recombinant Tv-PSP1 structure, determined with X-ray crystallography, showed unusual thermal stability of the quaternary structure, associated with a disulfide bridge CYS76-CYS104. To gain deeper insight into the Tv-PSP1 interaction with mRNA stem-loops (mRNAsl) and its relationship with thermal stability, we also used an integrated computational protocol that combined molecular dynamics simulations, docking assays, and binding energy calculations. Docking models allowed us to determine a putative contact surface interaction region between Tv-PSP1 and mRNAsl. We determined the contributions of these complexes to the binding free energy (ΔGb) in the electrostatic (ΔGelec) and nonelectrostatic (ΔGnon-elec) components using the Adaptive Poisson-Boltzmann Solver (APBS) program. We are the first, to the best of our knowledge, to show the interaction between Tv-PSP1 and the stem-loop structures of mRNA.

19.
J Biomol Struct Dyn ; 41(21): 11510-11517, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36715129

RESUMO

The octanol-water partition coefficient of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) was investigated using atomistic molecular dynamics simulations via thermodynamic integration and multistate Bennett acceptance ratio methods. The GAFF and CHARMM36 force fields were used with six water models widely used in molecular dynamics simulations. The OPC4 water model provided the best agreement with the experimental octanol-water partition coefficient of DPPC using the two force fields. However, there is still plenty of room for improvement in water models with correct estimation of surface tension that uses better and suitable non-bonded interaction parameters between water-water and water-DPPC. The Gibbs free energy of transferring DPPC from octanol to water phase was calculated to be 19.8 ± 0.3 and 20.2 ± 0.3 kcal mol-1, giving a partition coefficient of 14.5 ± 0.4 and 14.8 ± 0.3 for the GAFF and CHARMM36 force fields, respectively. This study reinforces the importance of developing new water models that reproduce experimental surface tensions to reconcile the water-water and water-DPPC non-bonded interactions and the existing discrepancy between experimental measurements of amphiphilic molecules that are important in many areas of scientific applications and industry such as biophysics, surfactant, colloids, membranes, medicine, nanotechnology, and food and pharmaceutical industries, and so on. It raises two important open questions: Is the experimental octanol-water partition coefficient of DPPC reliable? Or is its calculation accurate using the OPC4 water model? With respect to the experimental measurements, there may be non-treated aspects such as the formation of aggregates in aqueous phase and limit of detection of the applied method. And, in the calculation, some effects are not possible to be considered in a correct way or viable time such as calculating quantum effects, sampling all conformations, considering phase transitions, and correctly evaluating the intermolecular forces to estimate an accurate surface tension.Communicated by Ramaswamy H. Sarma.


Assuntos
Simulação de Dinâmica Molecular , Água , 1,2-Dipalmitoilfosfatidilcolina , Octanóis , Termodinâmica
20.
Plant Physiol Biochem ; 194: 193-201, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36427381

RESUMO

Increasing CO2 air concentration may affect wettability, anatomy and ultra-structure of leaves of Patagonian forest species, evergreen and deciduous plants potentially responding differently to such CO2 increases. In this study, we analysed the wettability, anatomy and ultra-structure of leaves of Nothofagus antarctica (deciduous) and N. betuloides (evergreen) grown under high CO2 concentrations. Leaf wettability was affected by increasing CO2, in different directions depending on species and leaf side. In both species, soluble cuticular lipid concentrations per unit leaf area raised with higher CO2 levels. Stomatal parameters (density, size of guard cells and pores) showed different responses to CO2 increasing depending on the species examined. In both species, leaf tissues showed a general trend to diminish with higher CO2 concentration. Cuticle thickness was modified with higher CO2 concentration in N. betuloides, but not in N. antarctica leaves. In both species, chloroplasts were often damaged with the increase in CO2 concentration. Our results show that several surface and internal leaf parameters can be modified in association with an increase in atmospheric CO2 concentration which may very among plant species.


Assuntos
Dióxido de Carbono , Folhas de Planta , Dióxido de Carbono/análise , Regiões Antárticas , Molhabilidade , Folhas de Planta/fisiologia , Atmosfera
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA