RESUMO
Recently, we published that the monoclonal antibody (D12 mAb) recognizes gp63 of L. mexicana, and it is responsible for COX activity. This D12 mAb exhibited cross-reactivity with Trypanosoma cruzi, Entamoeba histolytica, Acanthamoeba castellanii, and Naegleria fowleri. COX activity assays performed in these parasites suggested the potential presence of such enzymatic activity. In our investigation, we confirmed that wild-type recombinant gp63 exhibits COX-like activity, in contrast to a mutated recombinant gp63 variant. Consequently, our objective was to identify sequences orthologous to gp63 and subsequently analyze the binding of arachidonic acid (AA) to the putative active sites of these proteins. Given the absence of a crystallized structure for this protein in the Protein Data Bank (PDB), it was imperative to first obtain a three-dimensional structure by homology modeling, using leishmanolysin from Leishmania major (PDB ID: LML1) as a template in the Swiss model database. The results obtained through molecular docking simulations revealed the primary interactions of AA close to the Zinc atom present in the catalytic site of gp63-like molecules of several parasites, predominantly mediated by hydrogen bonds with HIS264, HIS268 and HIS334. Furthermore, COX activity was evaluated in commensal species such as E. dispar and during the encystment process of E. invadens.
RESUMO
Neutrophils interact with Leishmania when the sandfly vector inoculates these parasites in the host with saliva and promastigotes-derived extracellular vesicles (EVs). It has been shown that this co-injection induces inflammation and exacerbates leishmaniasis lesions. EVs are a heterogeneous group of vesicles released by cells that play a crucial role in intercellular communication. Neutrophils are among the first cells to interact with the parasites and release neutrophil extracellular traps (NETs) that ensnare and kill the promastigotes. Here, we show that Leishmania amazonensis EVs induce NET formation and identify molecular mechanisms involved. We showed the requirement of neutrophils' Toll-like receptors (TLRs) for EVs-induced NET. EVs carrying the virulence factors lipophosphoglycan (LPG) and the zinc metalloproteases were endocytosed by some neutrophils and snared by NETs. EVs-induced NET formation required reactive oxygen species, myeloperoxidase, elastase, peptidyl arginine deiminase (PAD), and Ca++. The proteomic analysis of the EVs cargo revealed 1,189 proteins; the 100 most abundant identified comprised some known Leishmania virulent factors. Importantly, L. amazonensis EVs-induced NETs lead to the killing of promastigotes and could participate in the exacerbated inflammatory response induced by the EVs, which may play a role in the pathogenesis process.
RESUMO
This study investigates the influence of pregnancy on the in vivo activity of the intestinal P-glycoprotein (P-gp) and hepatic organic anion transporters polypeptide (OATP/BCRP) using, respectively, fexofenadine and rosuvastatin as probe drugs. Eleven healthy participants were investigated during the third trimester of pregnancy (Phase 1, 28 to 38 weeks of gestation) and in the postpartum period (Phase 2, 8 to 12 weeks postpartum). In both phases, after administration of a single oral dose of fexofenadine (60 mg) and rosuvastatin (5 mg), serial blood samples were collected for up to 24 h. Rosuvastatin and fexofenadine in plasma were analyzed by LC-MS/MS using previously validated methods. The pharmacokinetic parameters of fexofenadine and rosuvastatin (Phoenix WinNonLin software) with normal distribution (Shapiro-Wilk test) are presented as geometric mean and 90% confidence interval. Phases 1 and 2 were compared using the t test (P < .05). Fexofexadine AUC0-24 values do not differ (P-value: .0715) between Phase 1 (641.9 ng h/mL [500.6-823.1]) and Phase 2 (823.8 ng h/mL [641.5-1057.6]) showing that pregnancy (third trimester) does not alter intestinal P-gp activity. However, rosuvastatin AUC0-24 values are higher (P-value: .00005) in Phase 1 (18.7 ng h/mL [13.3-26.4]) when compared to Phase 2 (9.5 ng h/mL [6.7-13.4]), suggesting inhibition of OATP1B1/OATP1B3 transporters. In conclusion, pregnancy assessed during the third trimester does not alter the intestinal P-gp activity but reduces the activity of hepatic OATP1B1/OATP1B3 transporters. Therefore, adjustments in dosage regimens may be necessary for drugs with low therapeutic index, substrates of the OATP1B1/OATP1B3 transporters, administered during the third trimester of pregnancy.
RESUMO
The success of using the insect cell-baculovirus expression technology (BEST) relies on the efficient construction of recombinant baculovirus with genetic stability and high productivity, ideally within a short time period. Generation of recombinant baculoviruses requires the transfection of insect cells, harvesting of recombinant baculovirus pools, isolation of plaques, and the expansion of baculovirus stocks for their use for recombinant protein production. Moreover, many options exist for selecting the genetic elements to be present in the recombinant baculovirus. This chapter describes the most commonly used homologous recombination systems for the production of recombinant baculoviruses, as well as strategies to maximize generation efficiency and recombinant protein or baculovirus production. The key steps for generating baculovirus stocks and troubleshooting strategies are described.
Assuntos
Baculoviridae , Proteínas Recombinantes , Baculoviridae/genética , Animais , Proteínas Recombinantes/genética , Vetores Genéticos/genética , Transfecção/métodos , Recombinação Homóloga , Células Sf9 , Linhagem Celular , Spodoptera/virologia , Insetos/genética , Insetos/virologiaRESUMO
Acute lymphoblastic leukemia (ALL) is the most common childhood cancer. Current chemotherapy treatment regimens have improved survival rates to approximately 80%; however, resistance development remains the primary cause of treatment failure, affecting around 20% of cases. Some studies indicate that loss of the phosphatase and tensin homolog (PTEN) leads to deregulation of the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway, increasing the expression of proteins involved in chemoresistance. PTEN loss results in deregulation of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and induces hypoxia-inducible factor 1-alpha (HIF-1α) expression in various cancers. Additionally, it triggers upregulation of the Yin Yang 1 (YY1) transcription factor, leading to chemoresistance mediated by glycoprotein p-170 (Gp-170). The aim of this study was to investigate the role of the PTEN/NF-κB axis in YY1 regulation via HIF-1α and its involvement in ALL. A PTEN inhibitor was administered in RS4;11 cells, followed by the evaluation of PTEN, NF-κB, HIF-1α, YY1, and Gp-170 expression, along with chemoresistance assessment. PTEN, HIF-1α, and YY1 expression levels were assessed in the peripheral blood mononuclear cells (PBMC) from pediatric ALL patients. The results reveal that the inhibition of PTEN activity significantly increases the expression of pAkt and NF-κB, which is consistent with the increase in the expression of HIF-1α and YY1 in RS4;11 cells. In turn, this inhibition increases the expression of the glycoprotein Gp-170, affecting doxorubicin accumulation in the cells treated with the inhibitor. Samples from pediatric ALL patients exhibit PTEN expression and higher HIF-1α and YY1 expression compared to controls. PTEN/Akt/NF-κB axis plays a critical role in the regulation of YY1 through HIF-1α, and this mechanism contributes to Gp-170-mediated chemoresistance in pediatric ALL.
Assuntos
Resistencia a Medicamentos Antineoplásicos , Subunidade alfa do Fator 1 Induzível por Hipóxia , PTEN Fosfo-Hidrolase , Leucemia-Linfoma Linfoblástico de Células Precursoras , Fator de Transcrição YY1 , Humanos , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/genética , Fator de Transcrição YY1/metabolismo , Fator de Transcrição YY1/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Resistencia a Medicamentos Antineoplásicos/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Criança , Linhagem Celular Tumoral , Transdução de Sinais/efeitos dos fármacos , NF-kappa B/metabolismo , Masculino , FemininoRESUMO
Trypanosoma cruzi, the etiological agent of Chagas' disease, can infect both phagocytic and non-phagocytic cells. T. cruzi gp82 and gp90 are cell surface proteins belonging to Group II trans-sialidases known to be involved in host cell binding and invasion. Phosphatidylinositol kinases (PIK) are lipid kinases that phosphorylate phospholipids in their substrates or in themselves, regulating important cellular functions such as metabolism, cell cycle and survival. Vps34, a class III PIK, regulates autophagy, trimeric G-protein signaling, and the mTOR (mammalian Target of Rapamycin) nutrient-sensing pathway. The mammalian autophagy gene Beclin1 interacts to Vps34 forming Beclin 1-Vps34 complexes involved in autophagy and protein sorting. In T. cruzi epimastigotes, (a non-infective replicative form), TcVps34 has been related to morphological and functional changes associated to vesicular trafficking, osmoregulation and receptor-mediated endocytosis. We aimed to characterize the role of TcVps34 during invasion of HeLa cells by metacyclic (MT) forms. MTs overexpressing TcVps34 showed lower invasion rates compared to controls, whilst exhibiting a significant decrease in gp82 expression in the parasite surface. In addition, we showed that T. cruzi Beclin (TcBeclin1) colocalizes with TcVps34 in epimastigotes, thus suggesting the formation of complexes that may play conserved cellular roles already described for other eukaryotes.
RESUMO
The aim of this study was to analyze the immunogenic response elicited in swine by two synthetic peptides derived from GP5 to understand the role of lineal B epitopes in the humoral and B-cell-mediated response against the porcine reproductive and respiratory syndrome virus (PRRSV). For inoculation, twenty-one-day-old pigs were allocated into six groups: control, vehicle, vaccinated (Ingelvac-PRRSV, MLV®), non-vaccinated and naturally infected, GP5-B and GP5-B3. At 2 days post-immunization (dpi), the GP5-B3 peptide increased the serum concentrations of cytokines associated with activate adaptive cellular immunity, IL-1ß (1.15 ± 1.15 to 10.17 ± 0.94 pg/mL) and IL-12 (323.8 ± 23.3 to 778.5 ± 58.11 pg/mL), compared to the control group. The concentration of IgGs anti-GP5-B increased in both cases at 21 and 42 dpi compared to that at 0 days (128.3 ± 8.34 ng/mL to 231.9 ± 17.82 and 331 ± 14.86 ng/mL), while IgGs anti-GP5-B3 increased at 21 dpi (105.1 ± 19.06 to 178 ± 15.09 ng/mL) and remained at the same level until 42 dpi. Also, antibody-forming/Plasma B cells (CD2+/CD21-) increased in both cases (9.85 ± 0.7% to 13.67 ± 0.44 for GP5-B and 15.72 ± 1.27% for GP5-B3). Furthermore, primed B cells (CD2-/CD21+) from immunized pigs showed an increase in both cases (9.62 ± 1.5% to 24.51 ± 1.3 for GP5-B and 34 ± 2.39% for GP5-B3) at 42 dpi. Conversely the naïve B cells from immunized pigs decreased compared with the control group (8.84 ± 0.63% to 6.25 ± 0.66 for GP5-B and 5.78 ± 0.48% for GP5-B3). Importantly, both GP5-B and GP5-B3 peptides exhibited immunoreactivity against serum antibodies from the vaccinated group, as well as the non-vaccinated and naturally infected group. In conclusion, GP5-B and GP5-B3 peptides elicited immunogenicity mediated by antigen-specific IgGs and B cell activation.
RESUMO
Liver fibrosis is the excessive accumulation of extracellular matrix proteins, primarily collagen, in response to liver injury caused by chronic liver diseases. HIV infection accelerates the progression of liver fibrosis in patients co-infected with HCV or HBV compared to those who are only mono-infected. The early event in the progression of liver fibrosis involves the activation of hepatic stellate cells (HSCs), which entails the loss of lipid droplets (LD) to fuel the production of extracellular matrix components crucial for liver tissue healing. Thus, we are examining the mechanism by which HIV stimulates the progression of liver fibrosis. HIV-R5 tropic infection was unable to induce the expression of TGF-ß, collagen deposition, α-smooth muscle actin (α-SMA), and cellular proliferation. However, this infection induced the secretion of the profibrogenic cytokine IL-6 and the loss of LD. This process involved the participation of peroxisome proliferator-activated receptor (PPAR)-α and an increase in lysosomal acid lipase (LAL), along with the involvement of Microtubule-associated protein 1 A/1B-light chain 3 (LC3), strongly suggesting that LD loss could occur through acid lipolysis. These phenomena were mimicked by the gp120 protein from the R5 tropic strain of HIV. Preincubation of HSCs with the CCR5 receptor antagonist, TAK-779, blocked gp120 activity. Additionally, experiments performed with pseudotyped-HIV revealed that HIV replication could also contribute to LD loss. These results demonstrate that the cross-talk between HSCs and HIV involves a series of interactions that help explain some of the mechanisms involved in the exacerbation of liver damage observed in co-infected individuals.
Assuntos
Infecções por HIV , Hepatopatias , Humanos , Colágeno/metabolismo , Células Estreladas do Fígado/metabolismo , Infecções por HIV/metabolismo , Gotículas Lipídicas/metabolismo , Cirrose Hepática/patologia , Hepatopatias/patologia , Proteína gp120 do Envelope de HIVRESUMO
Leishmaniasis, caused by protozoa of the genus Leishmania, encompasses a group of neglected diseases with diverse clinical and epidemiological manifestations that can be fatal if not adequately and promptly managed/treated. The current chemotherapy options for this disease are expensive, require invasive administration and often lead to severe side effects. In this regard, our research group has previously reported the potent anti-Leishmania activity of two coordination compounds (complexes) derived from 1,10-phenanthroline-5,6-dione (phendione): [Cu(phendione)3].(ClO4)2.4H2O and [Ag(phendione)2].ClO4. The present study aimed to evaluate the effects of these complexes on leishmanolysin (gp63), a virulence factor produced by all Leishmania species that plays multiple functions and is recognized as a potential target for antiparasitic drugs. The results showed that both Ag-phendione (-74.82 kcal/mol) and Cu-phendione (-68.16 kcal/mol) were capable of interacting with the amino acids comprising the active site of the gp63 protein, exhibiting more favorable interaction energies compared to phendione alone (-39.75 kcal/mol) or 1,10-phenanthroline (-45.83 kcal/mol; a classical gp63 inhibitor) as judged by molecular docking assay. The analysis of kinetic parameters using the fluorogenic substrate Z-Phe-Arg-AMC indicated Vmax and apparent Km values of 0.064 µM/s and 14.18 µM, respectively, for the released gp63. The effects of both complexes on gp63 proteolytic activity were consistent with the in silico assay, where Ag-phendione exhibited the highest gp63 inhibition capacity against gp63, with an IC50 value of 2.16 µM and the lowest inhibitory constant value (Ki = 5.13 µM), followed by Cu-phendione (IC50 = 163 µM and Ki = 27.05 µM). Notably, pretreatment of live L. amazonensis promastigotes with the complexes resulted in a significant reduction in the expression of gp63 protein, including the isoforms located on the parasite cell surface. Both complexes markedly decreased the in vitro association indexes between L. amazonensis promastigotes and THP-1 human macrophages; however, this effect was reversed by the addition of soluble gp63 molecules to the interaction medium. Collectively, our findings highlight the potential use of these potent complexes in antivirulence therapy against Leishmania, offering new insights for the development of effective treatments for leishmaniasis.
RESUMO
Anti-gp210 is the disease-specific anti-nuclear antibody (ANA) of primary biliary cholangitis (PBC). Anti-gp210-positive PBC patients have worse responses to ursodeoxycholic acid (UDCA) as compared with anti-gp210-negative patients. Moreover, anti-gp210-positive patients always present with more severe histopathologic features including lobular inflammation, interfacial hepatitis, and bile duct injury, and have a worse prognosis than their anti-gp210-negative counterparts. Previous studies have identified two antigenic epitopes recognized by anti-gp210. Although the pathogenetic mechanism of anti-gp210 production remains unclear, evidence suggests that the autoimmune response to anti-gp210 production might be due to molecular mimicry induced by bacteria or endogenous peptides. T cells and related cytokines play a critical role in the pathogenesis of PBC, however, the mechanism hasn't been fully understood. Thus, this review focuses on the clinicopathological characteristics of anti-gp210-positive PBC patients, the fundamental research of gp210 antigen, and the possible mechanism of anti-gp210 production to clarify the mechanism of anti-gp210-positive PBC and provide potential molecular targets for disease prevention and treatment in the future.
Assuntos
Colangite , Cirrose Hepática Biliar , Humanos , Cirrose Hepática Biliar/diagnóstico , Cirrose Hepática Biliar/tratamento farmacológico , Complexo de Proteínas Formadoras de Poros Nucleares , Ácido Ursodesoxicólico/uso terapêutico , Anticorpos Antinucleares , Prognóstico , Autoanticorpos , Colangite/diagnóstico , Colangite/tratamento farmacológicoRESUMO
We have developed a pipeline to express, purify, and characterize HIV envelope protein (Env) gp145 from Chinese hamster ovary cells, to accelerate the production of a promising vaccine candidate. First in shake flasks, then in bioreactors, we optimized the growth conditions. By adjusting the pH to 6.8, we increased expression levels to 101 mg/L in a 50 L bioreactor, nearly twice the previously reported titer value. A battery of analytical methods was developed in accordance with current good manufacturing practices to ensure a quality biopharmaceutical. Imaged capillary isoelectric focusing verified proper glycosylation of gp145; dynamic light scattering confirmed the trimeric arrangement; and bio-layer interferometry and circular dichroism analysis demonstrated native-like properties (i.e., antibody binding and secondary structure). MALDI-TOF mass spectrometry was used as a multi-attribute platform for accurate mass determination, glycans analysis, and protein identification. Our robust analysis demonstrates that our gp145 product is very similar to a reference standard and emphasizes the importance of accurate characterization of a highly heterogeneous immunogen for the development of an effective vaccine. Finally, we present a novel guanosine microparticle with gp145 encapsulated and displayed on its surface. The unique properties of our gp145 microparticle make it amenable to use in future preclinical and clinical trials.
RESUMO
This review is about Dr. Luiz Rodolpho Raja Gabaglia Travassos' scientific contributions to paracoccidioidomycosis as told by myself, Rosana Puccia, but co-written with Dr. Carlos P. Taborda, my younger scientific brother, collaborator, and dear friend. Dr. Travassos' pioneer papers and scientific insights covering biochemistry, immunology, cell biology, and molecular biology in the paracoccidiodomycosis area are key contributions that we acknowledge here, with focus on the Paracoccidioides antigen gp43. Importantly, we tell some personal stories behind the scene. Dr. Travassos' contribution to science is available in a number of quality publications, while his influence to hundreds of people who gravitated around him will be kept alive inside each one of us forever.
Assuntos
Paracoccidioides , Paracoccidioidomicose , Humanos , Masculino , Antígenos de Fungos , Paracoccidioidomicose/microbiologia , Paracoccidioides/genética , Proteínas FúngicasRESUMO
While several statistical machine learning methods have been developed and studied for assessing the genomic prediction (GP) accuracy of unobserved phenotypes in plant breeding research, few methods have linked genomics and phenomics (imaging). Deep learning (DL) neural networks have been developed to increase the GP accuracy of unobserved phenotypes while simultaneously accounting for the complexity of genotype-environment interaction (GE); however, unlike conventional GP models, DL has not been investigated for when genomics is linked with phenomics. In this study we used 2 wheat data sets (DS1 and DS2) to compare a novel DL method with conventional GP models. Models fitted for DS1 were GBLUP, gradient boosting machine (GBM), support vector regression (SVR) and the DL method. Results indicated that for 1 year, DL provided better GP accuracy than results obtained by the other models. However, GP accuracy obtained for other years indicated that the GBLUP model was slightly superior to the DL. DS2 is comprised only of genomic data from wheat lines tested for 3 years, 2 environments (drought and irrigated) and 2-4 traits. DS2 results showed that when predicting the irrigated environment with the drought environment, DL had higher accuracy than the GBLUP model in all analyzed traits and years. When predicting drought environment with information on the irrigated environment, the DL model and GBLUP model had similar accuracy. The DL method used in this study is novel and presents a strong degree of generalization as several modules can potentially be incorporated and concatenated to produce an output for a multi-input data structure.
Assuntos
Aprendizado Profundo , Triticum , Triticum/genética , Melhoramento Vegetal/métodos , Modelos Genéticos , Fenótipo , Genômica/métodos , GenótipoRESUMO
Baculoviridae is a large family of arthropod-infective viruses. Recombinant baculoviruses have many applications, the best known is as a system for large scale protein production in combination with insect cell cultures. More recently recombinant baculoviruses have been utilized for the display of proteins of interest with applications in medicine. In the present review we analyze the different strategies for the display of proteins and peptides on the surface of recombinant baculoviruses and provide some examples of the different proteins displayed. We analyze briefly the commercially available systems for recombinant baculovirus production and display and discuss the future of this emerging and powerful technology.
Assuntos
Artrópodes , Baculoviridae , Animais , Baculoviridae/genética , Peptídeos/genética , Técnicas de Cultura de CélulasRESUMO
Leishmaniasis is transmitted by sandfly which carries the intracellular protozoa in their midgut. Among visceral, cutaneous and mucocutaneous leishmaniasis, visceral type that is caused by Leishmania donovani is the most lethal one. Findings of leishmanial structure and species took place in 19th century and was initiated by Donovan. Leishmaniasis is still a major concern of health issues in many endemic countries in Asia, Africa, the Americas, and the Mediterranean region. Worldwide1.5-2 million new cases of cutaneous leishmaniasis and 500,000 cases of visceral leishmaniasis are reported each year. Leishmaniasis is endemic in nearly 90 countries worldwide and close to 12 million new cases of leishmaniasis are reported worldwide annually. Studies on antileishmanial drug development is of major concern as leishmaniasis are the second largest parasitic killer in the world and the available drugs are either toxic or costly. The major surface GP63 protease, also known as Zinc- metalloproteases present on the surface of leishmanial promastigotes, can be targeted for drug development. Protease inhibitors targeting such surface proteases show promising results. Different protease inhibitors have been isolated from marine actinobacteria against many infectious diseases. Metabolites produced by these actinobacteria may have greater importance for the discovery and development of new antileishmanial drugs. Hence, this review discusses the background, current situation, treatment, and protease inhibitors from marine actinobacteria for drug development against GP63 molecules.
Assuntos
Antiprotozoários , Leishmania donovani , Leishmaniose Cutânea , Leishmaniose Visceral , Humanos , Leishmaniose Visceral/tratamento farmacológico , Inibidores de Proteases/farmacologia , Inibidores de Proteases/uso terapêutico , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêuticoRESUMO
The glycoprotein (GP) IIb/IIIa receptor is found integrin present in platelet aggregations. GP IIb/IIIa antagonists interfere with platelet cross-linking and platelet-derived thrombus formation through the competition with fibrinogen and von Willebrand factor. Currently, three parenteral GP IIb/IIIa competitors (tirofiban, eptifibatide, and abciximab) are approved for clinical use in patients affected by percutaneous coronary interventions (PCI) in the location of acute coronary syndrome (ACS). GP IIb/IIIa antagonists have their mechanism of action in platelet aggregation prevention, distal thromboembolism, and thrombus formation, whereas the initial platelet binding to damage vascular areas is preserved. This work is aimed to provide a comprehensive review of the significance of GP IIb/IIIa inhibitors as a sort of antiplatelet agent. Their mechanism of action is based on factors that affect their efficacy. On the other hand, drugs that inhibit GP IIb/IIIa already approved by the FDA were reviewed in detail. Results from major clinical trials and regulatory practices and guidelines to deal with GP IIb/IIIa inhibitors were deeply investigated. The cardiovascular pathology and neuro-interventional surgical application of GP IIb/IIIa inhibitors as a class of antiplatelet agents were developed in detail. The therapeutic risk/benefit balance of currently available GP IIb/IIa receptor antagonists is not yet well elucidated in patients with ACS who are not clinically evaluated regularly for early cardiovascular revascularization. On the other hand, in patients who have benefited from PCI, the antiplatelet therapy intensification by the addition of a GP IIb/IIIa receptor antagonist (intravenously) may be an appropriate therapeutic strategy in reducing the occurrence of risks of thrombotic complications related to the intervention. Development of GP IIb/IIIa inhibitors with oral administration has the potential to include short-term antiplatelet benefits compared with intravenous GP IIb/IIIa inhibitors for long-term secondary preventive therapy in cardiovascular disease. But studies showed that long-term oral administration of GP IIb/IIIa receptor inhibitors has been ineffective in preventing ischemic events. Paradoxically, they have been linked to a high risk of side effects by producing prothrombotic and pro-inflammatory events.
Assuntos
Intervenção Coronária Percutânea , Inibidores da Agregação Plaquetária , Humanos , Inibidores da Agregação Plaquetária/uso terapêutico , Glicoproteína IIb da Membrana de Plaquetas , Complexo Glicoproteico GPIIb-IIIa de Plaquetas , AbciximabRESUMO
The classification of sEMG signals is fundamental in applications that use mechanical prostheses, making it necessary to work with generalist databases that improve the accuracy of those classifications. Therefore, synthetic signal generation can be beneficial in enriching a database to make it more generalist. This work proposes using a variant of generative adversarial networks to produce synthetic biosignals of sEMG. A convolutional neural network (CNN) was used to classify the movements. The results showed good performance with an increase of 4.07% in a set of movement classification accuracy when 200 synthetic samples were included for each movement. We compared our results to other methodologies, such as Magnitude Warping and Scaling. Both methodologies did not have the same performance in the classification.
Assuntos
Membros Artificiais , Redes Neurais de Computação , Eletromiografia/métodos , MovimentoRESUMO
P-glycoprotein (P-gp, encoded by the ABCB1 gene) and breast cancer resistance protein (BCRP/ABCG2) are efflux multidrug resistance (MDR) transporters localized at the syncytiotrophoblast barrier of the placenta and protect the conceptus from drug and toxin exposure throughout pregnancy. Infection is an important modulator of MDR expression and function. This review comprehensively examines the effect of infection on the MDR transporters, P-gp and BCRP in the placenta. Infection PAMPs such as bacterial lipopolysaccharide (LPS) and viral polyinosinic-polycytidylic acid (poly I:C) and single-stranded (ss)RNA, as well as infection with Zika virus (ZIKV), Plasmodium berghei ANKA (modeling malaria in pregnancy - MiP) and polymicrobial infection of intrauterine tissues (chorioamnionitis) all modulate placental P-gp and BCRP at the levels of mRNA, protein and or function; with specific responses varying according to gestational age, trophoblast type and species (human vs. mice). Furthermore, we describe the expression and localization profile of Toll-like receptor (TLR) proteins of the innate immune system at the maternal-fetal interface, aiming to better understand how infective agents modulate placental MDR. We also highlight important gaps in the field and propose future research directions. We conclude that alterations in placental MDR expression and function induced by infective agents may not only alter the intrauterine biodistribution of important MDR substrates such as drugs, toxins, hormones, cytokines, chemokines and waste metabolites, but also impact normal placentation and adversely affect pregnancy outcome and maternal/neonatal health.
Assuntos
Infecção por Zika virus , Zika virus , Gravidez , Feminino , Humanos , Camundongos , Animais , Placenta/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Distribuição Tecidual , Proteínas de Neoplasias/genética , Resistência a Múltiplos Medicamentos , Proteínas de Membrana Transportadoras/metabolismoRESUMO
Rotavirus is the main infective agent of acute gastroenteritis (AGE) in children under the age of five years and causing significant morbidity as well as mortality throughout the world. The study was carried out to detect the prevalence rate, genotypes strain and risk factors of Rotavirus among the children of rural and urban areas of district Bannu Khyber Pakhtunkhwa Pakistan. A total of 180 stool samples were collected from children under the age of 5 years from two major hospitals of Bannu from January to December (2015). The samples were analyzed by Reverse-transcriptase Polymerase Chain Reaction (RT-PCR) for the detection of Rotavirus, positive samples were further processed for genotyping (G and P type) through specific PCR. Of the total, 41 (23%) samples were positive for Rotavirus. The most prevalent G genotypes found were: G3, G8, G9 (each 29%), followed by G10 (15%), and G11 (10%). Whereas the prevalent P genotypes were: P-8 (25%), P-4 and P-10 (each 20%), P-9 (15%), followed by P-6 and P-11 (each 10%). Moreover, Rotavirus infection was more prevalent in summer (23.73%) and winter (22.7%) than spring (20%) and autumn (21.4%). Rotavirus infection exhibited high frequency in June (14%), October (8%) and November (6%). It is concluded that Rotavirus is more prevalent in children and various genotypes (G and P) of Rotavirus are present in the study area. Lack of studies, awareness and rarer testing of Rotavirus are the principal reasons of virus prevalence in district Bannu, Pakistan.(AU)
O rotavírus é o principal agente infeccioso da gastroenterite aguda (AGE) em crianças menores de 5 anos e causa de morbidade e mortalidade significativas em todo o mundo. O estudo foi realizado para detectar a taxa de prevalência, cepa de genótipos e fatores de risco de rotavírus entre as crianças de áreas rurais e urbanas do distrito de Bannu Khyber Pakhtunkhwa, Paquistão. Um total de 180 amostras de fezes foi coletada de crianças menores de 5 anos de dois grandes hospitais de Bannu de janeiro a dezembro (2015). As amostras foram analisadas por reação em cadeia da polimerase transcriptase reversa (RT-PCR) para detecção de rotavírus; as amostras positivas foram posteriormente processadas para genotipagem (tipo G e P) através de PCR específica. Do total, 41 (23%) amostras foram positivas para rotavírus. Os genótipos G mais prevalentes encontrados foram: G3, G8, G9 (cada 29%), seguidos de G10 (15%) e G11 (10%). Considerando que os genótipos P prevalentes foram: P-8 (25%), P-4 e P-10 (cada 20%), P-9 (15%), seguido por P-6 e P-11 (cada 10%). Além disso, a infecção por rotavírus foi mais prevalente no verão (23,73%) e inverno (22,7%) do que na primavera (20%) e no outono (21,4%). A infecção por rotavírus apresentou alta frequência em junho (14%), outubro (8%) e novembro (6%). Conclui-se que o rotavírus é mais prevalente em crianças e vários genótipos (G e P) do rotavírus estão presentes na área de estudo. A falta de estudos, conhecimento e testes mais raros de rotavírus são as principais razões da prevalência do vírus no distrito de Bannu, Paquistão.(AU)
Assuntos
Humanos , Criança , Gastroenterite , Infecções por Rotavirus/genética , Infecções por Rotavirus/epidemiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , PrevalênciaRESUMO
Abstract Leishmaniasis is transmitted by sandfly which carries the intracellular protozoa in their midgut. Among visceral, cutaneous and mucocutaneous leishmaniasis, visceral type that is caused by Leishmania donovani is the most lethal one. Findings of leishmanial structure and species took place in 19th century and was initiated by Donovan. Leishmaniasis is still a major concern of health issues in many endemic countries in Asia, Africa, the Americas, and the Mediterranean region. Worldwide1.5-2 million new cases of cutaneous leishmaniasis and 500,000 cases of visceral leishmaniasis are reported each year. Leishmaniasis is endemic in nearly 90 countries worldwide and close to 12 million new cases of leishmaniasis are reported worldwide annually. Studies on antileishmanial drug development is of major concern as leishmaniasis are the second largest parasitic killer in the world and the available drugs are either toxic or costly. The major surface GP63 protease, also known as Zinc- metalloproteases present on the surface of leishmanial promastigotes, can be targeted for drug development. Protease inhibitors targeting such surface proteases show promising results. Different protease inhibitors have been isolated from marine actinobacteria against many infectious diseases. Metabolites produced by these actinobacteria may have greater importance for the discovery and development of new antileishmanial drugs. Hence, this review discusses the background, current situation, treatment, and protease inhibitors from marine actinobacteria for drug development against GP63 molecules.