RESUMO
22q11.2 deletion syndrome (22q11.2DS) shows significant clinical heterogeneity. This study aimed to explore the association between clinical heterogeneity in 22q11.2DS and the parental origin of the deletion. The parental origin of the deletion was determined for 61 individuals with 22q11.2DS by genotyping DNA microsatellite markers and single-nucleotide polymorphisms (SNPs). Among the 61 individuals, 29 (47.5%) had a maternal origin of the deletion, and 32 (52.5%) a paternal origin. Comparison of the frequency of the main clinical features between individuals with deletions of maternal or paternal origin showed no statistically significant difference. However, Truncus arteriosus, pulmonary atresia, seizures, and scoliosis were only found in patients with deletions of maternal origin. Also, a slight difference in the frequency of other clinical features between groups of maternal or paternal origin was noted, including congenital heart disease, endocrinological alterations, and genitourinary abnormalities, all of them more common in patients with deletions of maternal origin. Although parental origin of the deletion does not seem to contribute to the phenotypic variability of most clinical signs observed in 22q11.2DS, these findings suggest that patients with deletions of maternal origin could have a more severe phenotype. Further studies with larger samples focusing on these specific features could corroborate these findings.
Assuntos
Síndrome de DiGeorge , Humanos , Feminino , Síndrome de DiGeorge/genética , Masculino , Criança , Adolescente , Polimorfismo de Nucleotídeo Único , Fenótipo , Pré-Escolar , Adulto , Cromossomos Humanos Par 22/genética , Lactente , Adulto JovemRESUMO
Penile squamous cell carcinoma (SCC) is a rare and aggressive tumour mainly related to lifestyle behaviour and human papillomavirus (HPV) infection. Environmentally induced loss of imprinting (LOI) at the H19 differentially methylated region (H19DMR) is associated with many cancers in the early events of tumorigenesis and may be involved in the pathogenesis of penile SCC. We sought to evaluate the DNA methylation pattern at H19DMR and its association with HPV infection in men with penile SCC by bisulfite sequencing (bis-seq). We observed an average methylation of 32.2% ± 11.6% at the H19DMR of penile SCC and did not observe an association between the p16INK4a+ (p = 0.59) and high-risk HPV+ (p = 0.338) markers with methylation level. The average methylation did not change according to HPV positive for p16INK4a+ or hrHPV+ (35.4% ± 10%) and negative for both markers (32.4% ± 10.1%) groups. As the region analysed has a binding site for the CTCF protein, the hypomethylation at the surrounding CpG sites might alter its insulator function. In addition, there was a positive correlation between intense polymorphonuclear cell infiltration and hypomethylation at H19DMR (p = 0.035). Here, we report that hypomethylation at H19DMR in penile SCC might contribute to tumour progression and aggressiveness regardless of HPV infection.
Assuntos
Carcinoma de Células Escamosas , Infecções por Papillomavirus , RNA Longo não Codificante , Masculino , Humanos , Metilação de DNA , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Carcinoma de Células Escamosas/genética , Carcinogênese , RNA Longo não Codificante/genéticaRESUMO
In vitro fertilization and somatic cell nuclear transfer are assisted reproduction technologies commonly used in humans and cattle, respectively. Despite advances in these technologies, molecular failures can occur, increasing the chance of the onset of imprinting disorders in the offspring. Large offspring syndrome/abnormal offspring syndrome (LOS/AOS) has been described in cattle and has features such as hypergrowth, malformation of organs, and skeletal and placental defects. In humans, Beckwith-Wiedemann syndrome (BWS) has phenotypic characteristics similar to those found in LOS/AOS. In both syndromes, disruption of genomic imprinting associated with loss of parental-specific expression and parental-specific epigenetic marks is involved in the molecular etiology. Changes in the imprinting pattern of these genes lead to loss of imprinting (LOI) due to gain or loss of methylation, inducing the emergence of these syndromes. Several studies have reported locus-specific alterations in these syndromes, such as hypomethylation in imprinting control region 2 (KvDMR1) in BWS and LOS/AOS. These LOI events can occur at multiple imprinted loci in the same affected individual, which are called multi-locus methylation defect (MLMD) events. Although the bovine species has been proposed as a developmental model for human imprinting disorders, there is little information on bovine imprinted genes in the literature, even the correlation of epimutation data with clinical characteristics. In this study, we performed a systematic review of all the multi-locus LOI events described in human BWS and LOS/AOS, in order to determine in which imprinted genes the largest changes in the pattern of DNA methylation and expression occur, helping to fill gaps for a better understanding of the etiology of both syndromes.
Assuntos
Síndrome de Beckwith-Wiedemann , Doenças dos Bovinos , Animais , Síndrome de Beckwith-Wiedemann/genética , Síndrome de Beckwith-Wiedemann/veterinária , Bovinos , Doenças dos Bovinos/genética , Metilação de DNA , Feminino , Impressão Genômica , Placenta , Gravidez , Técnicas de Reprodução Assistida/veterináriaRESUMO
El síndrome de Silver-Russell se caracteriza por retraso del crecimiento intrauterino asimétrico, con circunferencia craneal normal, barbilla pequeña y puntiaguda, que proporciona un aspecto de rostro triangular. Puede, además, presentar asimetría corporal, entre otros. Tiene una incidencia mundial estimada de 1 en 30 000-100 000 nacimientos, aunque este número es, probablemente, subestimado. En alrededor del 60 % de los casos, se puede identificar una causa molecular y la principal es la hipometilación del alelo paterno en la región de control de impresión 1 localizado en 11p15.5-p15.4. Realizar el diagnóstico de esta entidad, excluir los diagnósticos diferenciales y conocer las correlaciones (epi)genotipo-fenotipo son necesarios para realizar el adecuado seguimiento, brindar las opciones terapéuticas disponibles y el oportuno asesoramiento genético familiar. El objetivo del presente artículo es mostrar el estado actual del síndrome de Silver-Russell, un ejemplo de trastorno de impronta genómica.
Silver-Russell syndrome is characterized by asymmetrical intrauterine growth retardation, with normal head circumference and small, pointed chin, which results in a triangular face. It can also include body asymmetry, among other characteristics. Its global incidence is estimated at 1 in 30 000-100 000 births, even though this figure may be underestimated. In approximately 60 % of cases, a molecular cause can be identified, and the main one is hypomethylation of the paternal allele at the imprinting control region 1 located at 11p15.5-p15.4. It is necessary to make the diagnosis of this entity, exclude differential diagnoses, and know (epi)genotype-phenotype correlations in order to ensure an adequate follow-up, provide available therapeutic options, and offer a timely family genetic counseling. The objective of this article is to describe the current status of the Silver-Russell syndrome, a model of genomic imprinting disorder.
Assuntos
Humanos , Masculino , Feminino , Síndrome de Silver-Russell/fisiopatologia , Fenótipo , Impressão Genômica , Diagnóstico Diferencial , Síndrome de Silver-Russell/diagnóstico , Síndrome de Silver-Russell/terapia , Retardo do Crescimento Fetal , Aconselhamento Genético , GenótipoRESUMO
Silver-Russell syndrome is characterized by asymmetrical intrauterine growth retardation, with normal head circumference and small, pointed chin, which results in a triangular face. It can also include body asymmetry, among other characteristics. Its global incidence is estimated at 1 in 30 000-100 000 births, even though this figure may be underestimated. In approximately 60 % of cases, a molecular cause can be identified, and the main one is hypomethylation of the paternal allele at the imprinting control region 1 located at 11p15.5-p15.4. It is necessary to make the diagnosis of this entity, exclude differential diagnoses, and know (epi)genotype-phenotype correlations in order to ensure an adequate follow-up, provide available therapeutic options, and offer a timely family genetic counseling. The objective of this article is to describe the current status of the Silver-Russell syndrome, a model of genomic imprinting disorder.
El síndrome de Silver-Russell se caracteriza por retraso del crecimiento intrauterino asimétrico, con circunferencia craneal normal, barbilla pequeña y puntiaguda, que proporciona un aspecto de rostro triangular. Puede, además, presentar asimetría corporal, entre otros. Tiene una incidencia mundial estimada de 1 en 30 000- 100 000 nacimientos, aunque este número es, probablemente, subestimado. En alrededor del 60 % de los casos, se puede identificar una causa molecular y la principal es la hipometilación del alelo paterno en la región de control de impresión 1 localizado en 11p15.5-p15.4. Realizar el diagnóstico de esta entidad, excluir los diagnósticos diferenciales y conocer las correlaciones (epi)genotipo-fenotipo son necesarios para realizar el adecuado seguimiento, brindar las opciones terapéuticas disponibles y el oportuno asesoramiento genético familiar. El objetivo del presente artículo es mostrar el estado actual del síndrome de Silver-Russell, un ejemplo de trastorno de impronta genómica.
Assuntos
Impressão Genômica , Modelos Genéticos , Síndrome de Silver-Russell/diagnóstico , Síndrome de Silver-Russell/genética , Diagnóstico Diferencial , Estudos de Associação Genética , Aconselhamento Genético , Marcadores Genéticos , Testes Genéticos , Humanos , Mutação , Síndrome de Silver-Russell/patologia , Síndrome de Silver-Russell/terapiaRESUMO
Despite being developed from one zygote, heterokaryotypic monozygotic (MZ) co-twins exhibit discordant karyotypes. Epigenomic studies in biological samples from heterokaryotypic MZ co-twins are of the most significant value for assessing the effects on gene- and allele-specific expression of an extranumerary chromosomal copy or structural chromosomal disparities in otherwise nearly identical germline genetic contributions. Here, we use RNA-Seq data from existing repositories to establish within-pair correlations for the breadth and magnitude of allele-specific expression (ASE) in heterokaryotypic MZ co-twins discordant for trisomy 21 and maternal 21q inheritance, as well as homokaryotypic co-twins. We show that there is a genome-wide disparity at ASE sites between the heterokaryotypic MZ co-twins. Although most of the disparity corresponds to changes in the magnitude of biallelic imbalance, ASE sites switching from either strictly monoallelic to biallelic imbalance or the reverse occur in few genes that are known or predicted to be imprinted, subject to X-chromosome inactivation or A-to-I(G) RNA edited. We also uncovered comparable ASE differences between homokaryotypic MZ twins. The extent of ASE discordance in MZ twins (2.7%) was about 10-fold lower than the expected between pairs of unrelated, non-twin males or females. The results indicate that the observed within-pair dissimilarities in breadth and magnitude of ASE sites in the heterokaryotypic MZ co-twins could not solely be attributable to the aneuploidy and the missing allelic heritability at 21q.
RESUMO
BACKGROUND: Recent studies demonstrated that changes in DNA methylation (DNAm) and inactivation of two imprinted genes (MKRN3 and DLK1) alter the onset of female puberty. We aimed to investigate the association of DNAm profiling with the timing of human puberty analyzing the genome-wide DNAm patterns of peripheral blood leukocytes from ten female patients with central precocious puberty (CPP) and 33 healthy girls (15 pre- and 18 post-pubertal). For this purpose, we performed comparisons between the groups: pre- versus post-pubertal, CPP versus pre-pubertal, and CPP versus post-pubertal. RESULTS: Analyzing the methylome changes associated with normal puberty, we identified 120 differentially methylated regions (DMRs) when comparing pre- and post-pubertal healthy girls. Most of these DMRs were hypermethylated in the pubertal group (99%) and located on the X chromosome (74%). Only one genomic region, containing the promoter of ZFP57, was hypomethylated in the pubertal group. ZFP57 is a transcriptional repressor required for both methylation and imprinting of multiple genomic loci. ZFP57 expression in the hypothalamus of female rhesus monkeys increased during peripubertal development, suggesting enhanced repression of downstream ZFP57 target genes. Fourteen other zinc finger (ZNF) genes were related to the hypermethylated DMRs at normal puberty. Analyzing the methylome changes associated with CPP, we demonstrated that the patients with CPP exhibited more hypermethylated CpG sites compared to both pre-pubertal (81%) and pubertal (89%) controls. Forty-eight ZNF genes were identified as having hypermethylated CpG sites in CPP. CONCLUSION: Methylome profiling of girls at normal and precocious puberty revealed a widespread pattern of DNA hypermethylation, indicating that the pubertal process in humans is associated with specific changes in epigenetically driven regulatory control. Moreover, changes in methylation of several ZNF genes appear to be a distinct epigenetic modification underlying the initiation of human puberty.
Assuntos
Metilação de DNA , Proteínas de Ligação a DNA/genética , Estudo de Associação Genômica Ampla/métodos , Puberdade Precoce/genética , Fatores de Transcrição/genética , Animais , Estudos de Casos e Controles , Criança , Epigênese Genética , Feminino , Impressão Genômica , Humanos , Macaca mulatta , Linhagem , Regiões Promotoras Genéticas , Proteínas Repressoras , Dedos de ZincoRESUMO
The Beckwith-Wiedemann syndrome is the most common genetic entity in overgrowth, with an approximate incidence of 1 in 10 00013 700births. Its broad clinical spectrum includes pre- and postnatal macrosomia, macroglossia, pinna abnormalities, abdominal wall defects, visceromegaly, and hyperinsulinemic hypoglycemia. This syndrome predisposes to childhood cancer and is caused by diverse genetic and/or epigenetic disorders that usually affect the regulation of genes imprinted on chromosome 11p15.5. The knowledge of (epi) genotype-phenotype correlations has prompted recommendations to propose different health care strategies, including tumor surveillance protocols based on molecular classification, aimed at standardizing clinical practice. The objective of this article is to describe the current status of the Beckwith-Wiedemann syndrome, a model of genomic imprinting.
El síndrome de Beckwith-Wiedemann es la entidad genética de sobrecrecimiento más común, con una incidencia aproximada de 1 en 10 000-13 700 nacimientos. Presenta un amplio espectro clínico, que incluye macrosomía pre- y posnatal, macroglosia, alteraciones en el pabellón auricular, defectos en la pared abdominal, visceromegalia e hipoglucemia por hiperinsulinemia. Es un síndrome de predisposición a cáncer en la infancia, causado por una variedad de alteraciones genéticas y/o epigenéticas que suelen afectar la regulación de los genes impresos en 11p15.5. Conocer las correlaciones (epi) genotipo/fenotipo ha impulsado recomendaciones para plantear las diferentes estrategias de atención, entre ellas, los protocolos de vigilancia de tumores basados en la clasificación molecular, con la finalidad de estandarizar la práctica clínica. El objetivo del presente artículo es mostrar el estado actual del síndrome de Beckwith-Wiedemann, un ejemplo de impronta genómica.
Assuntos
Síndrome de Beckwith-Wiedemann/genética , Impressão Genômica/genética , Neoplasias/genética , Síndrome de Beckwith-Wiedemann/complicações , Criança , Predisposição Genética para Doença , Genótipo , Humanos , Neoplasias/epidemiologia , FenótipoRESUMO
A hallmark of imprinted genes in mammals is the occurrence of parent-of-origin-dependent asymmetry of DNA cytosine methylation (5mC) of alleles at CpG islands (CGIs) in their promoter regions. This 5mCpG asymmetry between the parental alleles creates allele-specific imprinted differentially methylated regions (iDMRs). iDMRs are often coupled to the transcriptional repression of the methylated allele and the activation of the unmethylated allele in a tissue-specific, developmental-stage-specific and/or isoform-specific fashion. iDMRs function as regulatory platforms, built through the recruitment of chemical modifications to histones to achieve differential, parent-of-origin-dependent chromatin segmentation states. Here, we used a comparative computational data mining approach to identify 125 novel constitutive candidate iDMRs that integrate the maximal number of allele-specific methylation region records overlapping CGIs in human methylomes. Twenty-nine candidate iDMRs display gametic 5mCpG asymmetry, and another 96 are candidate secondary iDMRs. We established the maternal origin of the 5mCpG imprints of one gametic (PARD6G-AS1) and one secondary (GCSAML) iDMRs. We also found a constitutively hemimethylated, nonimprinted domain at the PWWP2AP1 promoter CGI with oocyte-derived methylation asymmetry. Given that the 5mCpG level at the iDMRs is not a sufficient criterion to predict active or silent locus states and that iDMRs can regulate genes from a distance of more than 1 Mb, we used RNA-Seq experiments from the Genotype-Tissue Expression project and public archives to assess the transcriptional expression profiles of SNPs across 4.6 Mb spans around the novel maternal iDMRs. We showed that PARD6G-AS1 and GCSAML are expressed biallelically in multiple tissues. We found evidence of tissue-specific monoallelic expression of ZNF124 and OR2L13, located 363 kb upstream and 419 kb downstream, respectively, of the GCSAML iDMR. We hypothesize that the GCSAML iDMR regulates the tissue-specific, monoallelic expression of ZNF124 but not of OR2L13. We annotated the non-coding epigenomic marks in the two maternal iDMRs using data from the Roadmap Epigenomics project and showed that the PARD6G-AS1 and GCSAML iDMRs achieve contrasting activation and repression chromatin segmentations. Lastly, we found that the maternal 5mCpG imprints are perturbed in several hematopoietic cancers. We conclude that the maternal 5mCpG imprints at PARD6G-AS1 and GCSAML iDMRs are decoupled from parent-of-origin transcriptional expression effects in multiple tissues.
RESUMO
Prader-Willi (PWS) and Angelman (AS) syndromes are clinically distinct neurodevelopmental genetic diseases with multiple phenotypic manifestations. They are one of the most common genetic syndromes caused by non-Mendelian inheritance in the form of genomic imprinting, and can be attributable to the loss of gene expression due to imprinting within the chromosomal region 15q11-q13. Clinical diagnosis of PWS and AS is challenging, and the use of molecular and cytomolecular studies is recommended to help in determining the diagnosis of these conditions. The methylation analysis is a sensible approach; however there are several techniques for this purpose, such as the methylation-sensitive polymerase chain reaction (MS-PCR). This study aims to optimize the MS-PCR assay for the diagnosis of potential PWS and AS patients using DNA modified by sodium bisulfite. We used the MS-PCR technique of PCR described by Kosaki et al. (1997) adapted with betaine. All different concentrations of betaine used to amplify the methylated and unmethylated chromosomal region 15q11-q13 on the gene SNRPN showed amplification results, which increased proportionally to the concentration of betaine. The methylation analysis is a technically robust and reproducible screening method for PWS and AS. The MS-PCR assures a faster, cheaper and more efficient method for the primary diagnosis of the SNRPN gene in cases with PWS and AS, and may detect all of the three associated genetic abnormalities: deletion, uniparental disomy or imprinting errors.
Assuntos
Síndrome de Angelman/diagnóstico , Reação em Cadeia da Polimerase/métodos , Síndrome de Prader-Willi/diagnóstico , Proteínas Centrais de snRNP/genética , Síndrome de Angelman/genética , Betaína/metabolismo , Cromossomos Humanos Par 15/genética , Metilação de DNA , Impressão Genômica , Humanos , Técnicas de Diagnóstico Molecular/métodos , Síndrome de Prader-Willi/genética , Sensibilidade e EspecificidadeRESUMO
A maioria dos casos de puberdade precoce central (PPC) em meninas permanece idiopática. A hipótese de uma causa genética vem se fortalecendo após a descoberta de alguns genes associados a este fenótipo, sobretudo aqueles implicados com o sistema kisspeptina (KISS1 e KISS1R). Entretanto, apenas casos isolados de PPC foram relacionados à mutação na kisspeptina ou em seu receptor. Até recentemente, a maioria dos estudos genéticos em PPC buscava genes candidatos selecionados com base em modelos animais, análise genética de pacientes com hipogonadismo hipogonadotrófico, ou ainda, nos estudos de associação ampla do genoma. Neste trabalho, foi utilizado o sequenciamento exômico global, uma metodologia mais moderna de sequenciamento, para identificar variantes associadas ao fenótipo de PPC. Trinta e seis indivíduos com a forma de PPC familial (19 famílias) e 213 casos aparentemente esporádicos foram inicialmente selecionados. A forma familial foi definida pela presença de mais de um membro afetado na família. DNA genômico foi extraído dos leucócitos do sangue periférico de todos os pacientes. O estudo de sequenciamento exômico global realizado pela técnica ILLUMINA, em 40 membros de 15 famílias com PPC, identificou mutações inativadoras em um único gene, MKRN3, em cinco dessas famílias. Pesquisa de mutação no MKRN3 realizada por sequenciamento direto em duas famílias adicionais (quatro pacientes) identificou duas novas variantes nesse gene. O MKRN3 é um gene de um único éxon, localizado no cromossomo 15 em uma região crítica para a síndrome de Prader Willi. O gene MKRN3 sofre imprinting materno, sendo expresso apenas pelo alelo paterno. A descoberta de mutações em pacientes com PPC familial despertou o interesse para a pesquisa de mutações nesse gene em 213 pacientes com PPC aparentemente esporádica por meio de reação em cadeia de polimerase seguida de purificação enzimática e sequenciamento automático direto (Sanger). Três novas mutações e duas...
Most cases of central precocious puberty (CPP) in girls remain idiopathic. The hypothesis of a genetic cause has been strengthened after the discovery of some genes associated with this phenotype, particularly those involved with the kisspeptin system (KISS1 and KISS1R). However, genetic defects in KISS1 and its receptor are rare and have been identified in only a few patients with CPP.over the past years. To date, most genetic studies in CPP was based mainly on a candidate gene approach, including genes selected in animal studies, human models of patients with hypogonadotropic hypogonadism or in genome wide association studies. In the present study, we used whole exome sequencing, a more advanced method of sequencing, to identify variants associated with CPP. Thirty-six patients with the familial form of CPP (19 families) and 213 apparently sporadic cases were initially selected. The familial form was defined by the presence of more than one member affected in the family. Genomic DNA was extracted from peripheral blood leukocytes in all patients. Whole exome sequencing performed by ILLUMINA technique in 40 members of 15 families with CPP, identified inactivating mutations in a single gene, MKRN3, in five out of these families. Analysis of MKRN3 mutations performed by automatic sequencing in two additional families (four patients) identified two novel mutations. MKRN3 is an introless gene located on chromosome 15, in the Prader Willi syndrome critical region, and it is expressed only by the paternal allele due to the maternal imprinting. Following the initial findings, we searched for MKRN3 mutations in 213 patients with apparently sporadic CPP using polymerase chain reaction followed by direct enzymatic purification and automated sequencing (Sanger). Three new mutations and two previously reported, including four frameshifts and one missense variant was identified in six unrelated girls with CPP. All variants were not described in...
Assuntos
Humanos , Masculino , Feminino , Pré-Escolar , Criança , Impressão Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Puberdade Precoce/genéticaRESUMO
CCCTC-binding factor (CTCF) is the major protein involved in insulator activity in vertebrates, with widespread DNA binding sites in the genome. CTCF participates in many processes related to global chromatin organization and remodeling, contributing to the repression or activation of gene transcription. It is also involved in epigenetic reprogramming and is essential during gametogenesis and embryo development. Abnormal DNA methylation patterns at CTCF motifs may impair CTCF binding to DNA, and are related to fertility disorders in mammals. Therefore, CTCF and its binding sites are important candidate regions to be investigated as molecular markers for gamete and embryo quality. This article reviews the role of CTCF in genomic imprinting, gametogenesis, and early embryo development and, moreover, highlights potential opportunities for environmental influences associated with assisted reproductive techniques (ARTs) to affect CTCF-mediated processes. We discuss the potential use of CTCF as a molecular marker for assessing gamete and embryo quality in the context of improving the efficiency and safety of ARTs.
Assuntos
Impressão Genômica/genética , Crescimento e Desenvolvimento/genética , Proteínas Repressoras/fisiologia , Reprodução/genética , Animais , Fator de Ligação a CCCTC , Metilação de DNA , Desenvolvimento Embrionário/genética , Fertilidade/genética , Gametogênese/genética , Humanos , Proteínas Repressoras/química , Técnicas de Reprodução AssistidaRESUMO
Introducción: El síndrome de Silver-Russell presenta restricción del crecimiento intrauterino y posnatal, macrocefalia relativa y asimetría, entre otras características. Es causado por mecanismos genéticos y epigenéticos en el cromosoma 11p15.5 en el 40% de los casos y por disomía uniparental materna del cromosoma 7 en el 10%. Métodos: Se identificaron los pacientes con diagnóstico de síndrome de Silver-Russell del Hospital Infantil de México Federico Gómez atendidos de 1998 a 2012; se reevaluaron 20 pacientes según los criterios clínicos internacionales, y se confirmó el diagnóstico en nueve sujetos. Resultados: Todos los pacientes presentaron restricción del crecimiento intrauterino y talla baja, ambos criterios diagnósticos mayores. La macrocefalia relativa estuvo presente en el 78% y la asimetría corporal solo en el 33%. Otras características, como la acidosis tubular renal, estuvieron presentes en más del 50%. Conclusiones: El diagnóstico del síndrome de Silver-Russell es complejo, por lo que contar con criterios clínicos adecuados es fundamental. Dado que la talla baja es la principal solicitud de atención médica en este síndrome, es relevante establecer diagnósticos diferenciales y valorar el crecimiento y desarrollo de todos los pacientes para identificar a aquellos en quienes la talla baja forma parte de una entidad sindrómica y que serían candidatos para realizar estudios moleculares. Este abordaje tendrá implicaciones para su manejo, pronóstico y asesoramiento genético.
Background: Patients with Silver-Russell syndrome suffer from severe intrauterine and postnatal growth retardation, relative macrocephaly and body asymmetry, among other characteristics. It is caused by several genetic and epigenetic mechanisms in 11p15.5 in 40% of the cases and maternal uniparental disomy of chromosome 7 in 10%. Methods: Twenty patients with a diagnosis of Silver-Russell syndrome who were seen at the HIMFG from 1998 to 2012, were evaluated according to international clinical criteria confirming the diagnosis in nine of the subjects. Results: All patients showed intrauterine and postnatal growth retardation and short stature, both considered as major criteria of Silver-Russell syndrome. Relative macrocephaly was present in 78% of the patients and asymmetry in 33%. Other characteristics such as renal tubular acidosis were present > 50% of the cases. Conclusions: The clinical diagnosis of Silver-Russell syndrome is complex. Short stature is the main reason for seeking medical attention and is helpful in the identification of a differential diagnosis. This situation underlines the importance of growth and development evaluation of all patients and particularly in those with short stature to identify those cases that may require molecular studies, with implications in management, prognosis and genetic counseling.
RESUMO
BACKGROUND: Patients with Silver-Russell syndrome suffer from severe intrauterine and postnatal growth retardation, relative macrocephaly and body asymmetry, among other characteristics. It is caused by several genetic and epigenetic mechanisms in 11p15.5 in 40% of the cases and maternal uniparental disomy of chromosome 7 in 10%. METHODS: Twenty patients with a diagnosis of Silver-Russell syndrome who were seen at the HIMFG from 1998 to 2012, were evaluated according to international clinical criteria confirming the diagnosis in nine of the subjects. RESULTS: All patients showed intrauterine and postnatal growth retardation and short stature, both considered as major criteria of Silver-Russell syndrome. Relative macrocephaly was present in 78% of the patients and asymmetry in 33%. Other characteristics such as renal tubular acidosis were present > 50% of the cases. CONCLUSIONS: The clinical diagnosis of Silver-Russell syndrome is complex. Short stature is the main reason for seeking medical attention and is helpful in the identification of a differential diagnosis. This situation underlines the importance of growth and development evaluation of all patients and particularly in those with short stature to identify those cases that may require molecular studies, with implications in management, prognosis and genetic counseling.
RESUMO
In addition to methylated cytosines (5-mCs), hydroxymethylcytosines (5-hmCs) are present in CpG dinucleotide-enriched regions and some transcription regulator binding sites. Unlike methylation, hydroxymethylation does not result in silencing of gene expression, and the most commonly used methods to study methylation, such as techniques based on restriction enzymatic digestion and/or bisulfite modification, are unable to distinguish between them. Genomic imprinting is a process of gene regulation where only one member of an allelic pair is expressed depending on the parental origin. Chromosome 11p15.5 has an imprinting control region (ICR2) that includes a differentially methylated region (KvDMR1) that guarantees parent-specific gene expression. The objective of the present study was to determine the presence of 5-hmC at the KvDMR1 in human placentas. We analyzed 16 third-trimester normal human placentas (chorionic villi). We compared two different methods based on real-time PCR after enzymatic digestion. The first method distinguished methylation from hydroxymethylation, while the other method did not. Unlike other methylation studies, subtle variations of methylation in ICRs could represent a drastic deregulation of the expression of imprinted genes, leading to important phenotypic consequences, and the presence of hydroxymethylation could interfere with the results of many studies. We observed agreement between the results of both methods, indicating the absence of hydroxymethylation at the KvDMR1 in third-trimester placentas. To the best of our knowledge, this is the first study describing the investigation of hydroxymethylation in human placenta using a genomic imprinting model.
RESUMO
A epigenética compreende um conjunto de mecanismos que promovem a regulação da expressão gênica a nível transcricional através de modificações químicas no DNA e na cromatina, como metilação, acetilação e fosforilação, que resultam na conseqüente mudança fenotípica do indivíduo sem, no entanto, ocorrer nenhuma alteração na seqüência do DNA. Essas modificações químicas no DNA são constantemente feitas e desfeitas durante toda a vida do indivíduo, exceto para marcações químicas constitutivas que são herdadas geneticamente, visto que freqüentemente os indivíduos entram em contato com agentes promotores desses fenômenos durante a vida. Alterações nos padrões epigenéticos promovendo a expressão aberrante ou o silenciamento de determinados genes podem aparecer em organismos com idade avançada, e em uma ampla variedade de eventos e patologias como no câncer, na inativação do cromossomo X, no imprinting genômico, e em diversas síndromes de ordem neurológica e de prejuízo no desenvolvimento motor. Desse modo, busca-se atualmente o desenvolvimento de drogas que possuem a capacidade de reverter as marcações químicas alteradas em regiões específicas do genoma relacionadas a determinadas doenças. Uma maior compreensão desse universo da epigenética associada com suas implicações aos estados fisiológicos normais e patológicos mostra-se como uma grande promessa nessa era molecular, para o desenvolvimento de ferramentas profiláticas, diagnósticas e terapêuticas de uma ampla variedade de doenças.
Epigenetics includes several mechanisms that promote the gene expression regulation at transcriptional level through chemical changes in DNA and chromatin, such as methylation, acetylation and phosphorylation, resulting in phenotypic change without no changes occur in the DNA sequence. These DNA chemical changes are constantly made and unmade throughout the individual life, except for constitutive chemical markings that are genetically inherited, because often people are in contact with agents that promote these phenomens during their lifes. Changes in epigenetic patterns promoting aberrant expression or gene silencing may appear in aged organisms, and in a wide variety of events and conditions such as cancer, X chromosome inactivation in genomic imprinting, and in various neurological and motor development syndromes. Thus, seek currently drugs development that have the ability to reverse altered chemical markings in specific regions of the genome related to certain diseases. A greater understanding of the epigenetic universe associated with its implications to normal physiological and pathological states, it is a great promise in molecular era to development of prophylactic, diagnostic and therapeutic tools of a wide variety of diseases.
Assuntos
Acetilação , Fosforilação , MetilaçãoRESUMO
En los organismos diploides, cada gen autosómico está representado por dos copias, o alelos, heredados de cada progenitor al momento de la fecundación. Para la gran mayoría de los genes la expresión ocurre desde ambos alelos de manera simultánea. Sin embargo, un número reducido de genes (menos del 1%) es afectado por un proceso de impronta genómica. Este proceso determina que la expresión del gen sea dependiente del origen parental, es decir, se comporte de manera distinta si su origen es materno o paterno. La metilación del ADN es una de las modificaciones epigenéticas mejor estudiadas y su participación resulta esencial durante el establecimiento de la impronta genómica. Si bien los patrones de metilación a nivel genómico son estables y heredables, existen al menos dos períodos del desarrollo embrionario de mamíferos durante los cuales los patrones de metilación globales son borrados y re-establecidos. Estos dos períodos del desarrollo coinciden con el borrado y establecimiento de la impronta genómica específica de cada individuo. Desde el punto de vista funcional, la mayoría de los genes sometidos a impronta cumplen roles en el control del crecimiento y desarrollo embrionario y placentario. Alteraciones en el patrón de expresión de ellos han sido relacionados a patologías tales como el Síndrome de Algelman y el Síndrome de Prader-Willi, entre otros.
In diploid organisms, autosomal genes are composed of two copies, or alleles, inherited from both parents at fertilization. For the vast majority of autosomal genes, expression occurs from both alleles simultaneously. However, a small proportion (<1%) of genes are imprinted, meaning that their expression depends on the parental origin . DNA methylation is one of the most known epigenetic modifications and its function is critical for the establishment of imprinting. The global pattern of genomic methylation is stable and inheritable, however, it is erased and re-established in a sex-depended manner at two critical periods of embryonic development. Functionally, the majority of imprinted genes play roles in the control of embryonic and placental growth and development. Alterations in imprinted genes have been correlated with several pathologies including the Angelman and Prader-Willi syndromes.
Assuntos
Humanos , Animais , Impressão Genômica , Metilação de DNA , Epigênese Genética , Desenvolvimento Embrionário/genéticaRESUMO
El Tumor de Wilms constituye el más frecuente de los cánceres renales pediátricos, aparece antes de los 5 años de edad y con igual frecuencia en ambos sexos. El gen causante de la enfermedad está localizado en 11p13, se extiende unas 50 kb con 10 exones y sus alteraciones pueden ser tanto genéticas como epigenéticas. Por diferentes mecanismos se originan al menos 24 productos con funciones diversas. Existen otras regiones cromosómicas, cuyas alteraciones pueden dar lugar a la aparición del tumor. En este sentido, el Tumor de Wilms es un ejemplo sobresaliente de heterogeneidad genética. El presente trabajo hace un análisis de los fundamentos moleculares de la enfermedad y presenta a modo de ilustración una breve reseña de los principales síndromes hereditarios con predisposición a presentar este tumor.
Wilm's tumor is the most frequent cancer of the kidney in childhood with onset before five year old. WT gene was mapped in 11p13 and span 50 kb with 10 exons. WT modifications would be either genetics or epigenetics. The gene code for at least 24 isoforms of protein products. Other chromosomes loci whose alterations may be cause of disease have been identified, so Wilm's tumor is a remarkable paradigm of genetic heterogeneity. In this paper an analysis of the molecular basis of the disease is presented and, also, a brief references on main hereditary syndromes which include Wilm's tumor.
RESUMO
Although assisted reproductive technologies (ARTs) have allowed millions of otherwise infertile couples to conceive children of their own, concerns remain about the safety of these procedures due to an increased incidence of epigenetic disorders in children born following the use of ART. Specifically, abnormal genomic imprinting and/or diseases caused by abnormal imprinting have been reported. While the frequencies of these defects among all ART offspring remain very low, studies have shown that children born using ARTs can be up to six times more likely to develop certain imprinting disorders than those who are naturally conceived. In addition, studies of animals produced from ART-derived embryos and/or superovulated oocytes have revealed abnormal allele-specific expression and DNA methylation profiles at imprinted genes. Many different aspects of ART procedures have been implicated in the etiology of imprinting disorders. However, it remains difficult to distinguish between abnormalities that develop as a result of inherent consequences of infertility and those induced directly by ART procedures. In support of the latter, there is a growing body of evidence suggesting that the use of exogenous gonadotropins to stimulate folliculogenesis (superovulation) in females undergoing ARTs may contribute to the induction of abnormal genomic imprinting. The association between superovulation and imprinting disorders is difficult to fully assess because of the high variability in ART protocols, especially those applied to human patients, and the small number of animal studies published to date. However, because the use of ARTs is becoming increasingly prevalent in developed countries, and ovarian stimulation is typically an indispensable part of these procedures, further investigation into the potential for these procedures to induce epigenetic defects is highly warranted. Here, we review the existing literature suggesting a potential causal relationship between endocrine stimulation and the induction of imprinting abnormalities. In addition, we suggest directions for future research in this area.(AU)
Assuntos
Sistema Endócrino/embriologia , Epigênese Genética/genética , Técnicas de Reprodução Assistida/efeitos adversos , Metilação de DNA , Impressão Genômica/genética , Indução da Ovulação/métodos , Componentes Genômicos/fisiologia , Células Germinativas/fisiologiaRESUMO
Although assisted reproductive technologies (ARTs) have allowed millions of otherwise infertile couples to conceive children of their own, concerns remain about the safety of these procedures due to an increased incidence of epigenetic disorders in children born following the use of ART. Specifically, abnormal genomic imprinting and/or diseases caused by abnormal imprinting have been reported. While the frequencies of these defects among all ART offspring remain very low, studies have shown that children born using ARTs can be up to six times more likely to develop certain imprinting disorders than those who are naturally conceived. In addition, studies of animals produced from ART-derived embryos and/or superovulated oocytes have revealed abnormal allele-specific expression and DNA methylation profiles at imprinted genes. Many different aspects of ART procedures have been implicated in the etiology of imprinting disorders. However, it remains difficult to distinguish between abnormalities that develop as a result of inherent consequences of infertility and those induced directly by ART procedures. In support of the latter, there is a growing body of evidence suggesting that the use of exogenous gonadotropins to stimulate folliculogenesis (superovulation) in females undergoing ARTs may contribute to the induction of abnormal genomic imprinting. The association between superovulation and imprinting disorders is difficult to fully assess because of the high variability in ART protocols, especially those applied to human patients, and the small number of animal studies published to date. However, because the use of ARTs is becoming increasingly prevalent in developed countries, and ovarian stimulation is typically an indispensable part of these procedures, further investigation into the potential for these procedures to induce epigenetic defects is highly warranted. Here, we review the existing literature suggesting a potential causal relationship between endocrine stimulation and the induction of imprinting abnormalities. In addition, we suggest directions for future research in this area.