RESUMO
The complex physical-chemical and microbiological composition of leachate in sanitary landfills sets the adequate treatment for different waste types. However, before the final disposal of wastes in receptor waterbodies, it is essential to use specific methods to quantitatively prevent internal flows to find proper treatments. The aim of the present research is to use hydrological models to estimate monthly leachate flow generation in Macapá's Municipal Sanitary Landfill (ASMM), Amapá State, Brazil. Disregarding the temporal trend bias, the average (0.45 m3s-1), minimum (0.07 m3s-1) and maximum (0.72 m3s-1) flows were estimated based on hydrological models in the literature (Rmax = 99%, p < 0.05). The results estimated from different hydrological gauges pointed towards significant spatial variations in final discharge. Thus, estimated flows worked as reference to calculate the loads of coproducts and nutrients concerning different operational stages in ASMM. Therefore, rain intensity estimates have pointed out precipitation variability, and it has significantly affected leachate flow. In conclusion, there would be a proportional increase in leachate flow during extreme maximum precipitation events; overflow would be the effect of such flows and it would assumingly have impact on its surrounding areas. It is also possible estimating some degree of rainfall impact over ASMM's infrastructure in the long term (>10 years), since it could influence its lifespan.
Assuntos
Eliminação de Resíduos , Poluentes Químicos da Água , Eliminação de Resíduos/métodos , Poluentes Químicos da Água/análise , Brasil , Instalações de Eliminação de Resíduos , ChuvaRESUMO
Evaporation is a major factor controlling the hydrological dynamics of surface water reservoirs in dry environments, therefore quantification with minimal uncertainties is desired. The aim of this paper is to assess the spatial variability and impact of riparian vegetation on reservoir evaporation by remote sensing. Eight reservoirs located in subhumid and semi-arid climates in the Brazilian Drylands were studied. Scenes from Landsat 5 and Landsat 8 satellites (1985 and 2018) supplied the data for four evaporation models. For reference evaporation, the Class A Pan and Piché Evaporimeter closest to the reservoirs were considered. The occurrence/density of riparian vegetation was associated with the Normalized Difference Vegetation Index (NDVI) and its influence on evaporation was assessed. The Surface Energy Balance System for Water (AquaSEBS) model presented the best average performance (Nash-Sutcliffe Efficiency coefficient 0.40 ± 0.19). Evaporation was observed to be higher at the reservoirs' margins and near the dams, due to the contact of exposed soil and rock/concrete, respectively, which transfer heat to the water. Marginal areas near the riparian forest presented low evaporation rates with decreases between 18% and 31% in relation to the average. This interdependence was evidenced by the high negative correlation (R2 0.87-0.96) between NDVI and evaporation; vegetation reduces radiation because of the shading of the reservoir margin and changes local aerodynamics, reducing evaporation. Depending on the spatial variability of evaporation, it was found that the volumes transferred to the atmosphere may have variations of up to 30%. On average, the evaporated volume in all the studied reservoirs is 450,000 m3/day, a quantity enough to supply more than two million people. Overall, the results of this study contribute not only to a better understanding of the spatial variability of evaporation in surface reservoirs, but also of the interdependence between riparian vegetation and evaporation rates.
Assuntos
Ecossistema , Hidrologia , Florestas , Humanos , Solo , ÁguaRESUMO
The aim of this study was to identify primary flow paths involved in the chlordecone (CLD) river contamination and quantify the CLD fluxes to assess CLD pollution levels and duration according to a typical catchment of the banana cropping area in the French Indies (Guadeloupe): the Pérou Catchment (12 km(2)) characterized by heavy rainfall (5686 mm year(-1)). Three sub-catchments (SC1, SC2 and SC3) were studied during the hydrological year 2009-2010: a pedological survey combined with a spatialized hydrochemical approach was conducted. The average soil concentration is higher in the Pérou Catchment (3400 µg kg(-1)) than in the entire banana cropping area in Guadeloupe (2100 µg kg(-1)). The results showed that CLD stocks in soils vary largely among soil types and farming systems: the weakest stocks are located upstream in SC1 (5 kg ha(-1)), where a majority of the area is non-cultivated; medium stocks are located in Nitisols downstream in SC3 (9 kg ha(-1)); and the greatest stocks are observed in SC2 on Andosols (12 kg ha(-1)) characterized by large farms. The annual water balance and the hydro-chemical analysis revealed that the three sub-catchments exhibited different behaviors. Pérou River contamination was high during low flows, which highlighted that contamination primarily originated from groundwater contributions. The results showed that only a small part of the catchment (SC2), contributing little to the water flow, comprises a major CLD contribution, which is in agreement with the highly contaminated andosol soils observed there. Another significant result considers that at least 50 years would be required to export the totality of the actual CLD soil stocks retained in the topsoil layer. The actual time for soil remediation will however be much longer considering (i) the necessary time for the chlordecone to percolate and be stored in the shallow aquifers and (ii) its travel time to reach the river.