RESUMO
The importance of bioactive compounds in agro-industrial by-products of plant origin lies in their direct impacts on human health. These compounds have been shown to possess antioxidant, anti-inflammatory, and antimicrobial properties, contributing to disease prevention and strengthening the immune system. In particular, the antimicrobial action of these compounds emerges as an important tool in food preservation, providing natural alternatives to synthetic preservatives and contributing to combating antimicrobial resistance. Using agro-industrial by-products of plant origin not only addresses the need to reduce waste and promote sustainability but also inaugurates a new era in the formulation of functional foods. From fruit peels to pulps and seeds, these by-products are emerging as essential ingredients in the creation of products that can promote health. Continued research in this area will unveil new applications and properties of these by-products and open doors to a food paradigm in which health and sustainability converge, paving the way to a healthier and more equitable future. The present review presents an overview of our knowledge of agro-industrial by-products and some of their more relevant health-promoting bioactivities.
Assuntos
Anti-Infecciosos , Antioxidantes , Antioxidantes/farmacologia , Antioxidantes/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Humanos , Agricultura , Plantas/químicaRESUMO
Industrial activities contribute to environmental pollution, particularly through unregulated effluent discharges, causing adverse effects on ecosystems. Vegetable oils, as insoluble substances, exacerbate this pollution, forming impermeable films and affecting the oxygen transfer, leading to serious habitat disruption. Organic wastes, such as soybean texturized waste, spent mushroom substrate, and stabilized poultry litter, were assessed for their efficacy in enhancing the degradation of vegetable oil in contaminated soil. For this purpose, contaminated soil was amended with each of the wastes (10% w/w) using microcosm systems, which were monitored physico-chemically, microbiologically and toxicologically. Results indicate that the wastes promoted significant oil degradation, achieving 83.1, 90.7, and 86.2% removal for soybean texturized waste, spent mushroom substrate, and stabilized poultry litter, respectively, within a 90-day period. Additionally, they positively influenced soil microbial activity, as evidenced by increased levels of culturable microorganisms and hydrolytic microbial activity. While bioassays indicated no phytotoxicity in most cases, soybean texturized waste exhibited inhibitory effects on seed germination and root elongation of Lactuca sativa. This study significantly enhances our comprehension of remediation techniques for sites tainted with vegetable oils, highlighting the critical role of organic waste as eco-friendly agents in soil restoration. Emphasizing the practical implications of these findings is imperative to underscore the relevance and urgency of addressing vegetable oil contamination in soil. Moving forward, tailored strategies considering both contaminant characteristics and soil ecosystem traits are vital for ensuring effective and sustainable soil remediation.
Assuntos
Biodegradação Ambiental , Glycine max , Óleos de Plantas , Aves Domésticas , Microbiologia do Solo , Poluentes do Solo , Solo , Animais , Poluentes do Solo/metabolismo , Glycine max/crescimento & desenvolvimento , Glycine max/microbiologia , Óleos de Plantas/metabolismo , Solo/química , Agaricales/metabolismo , Agaricales/crescimento & desenvolvimento , Lactuca/crescimento & desenvolvimento , Bactérias/metabolismo , Germinação/efeitos dos fármacos , Resíduos IndustriaisRESUMO
This study aimed to provide an updated critical review of the nutritional, therapeutic, biotechnological, and environmental aspects involved in the exploitation of Chenopodium quinoa Willd and its biowastes. Special attention was devoted to investigations of the therapeutic and nutritional properties of different parts and varieties of quinoa as well as of the use of the biowaste resulting from the processing of grain. Studies published from 2018 onward were prioritized. Extracts and fractions obtained from several Chenopodium quinoa matrices showed antioxidant, antidiabetic, immunoregulatory, neuroprotective, and antimicrobial effects in in vitro and in vivo models and some clinical studies. The activities were attributed to the presence of phytochemicals such as polyphenols, saponins, peptides, polysaccharides, and dietary fibers. Quinoa wastes are abundant and low-cost sources of bioactive molecules for the development of new drugs, natural antioxidants, preservatives, dyes, emulsifiers, and carriers for food and cosmetics applications. Among the demands to be fulfilled in the coming years are the following: (1) isolation of new bioactive phytochemicals from quinoa varieties that are still underexploited; (2) optimization of green approaches to the sustainable recovery of compounds of industrial interest from quinoa by-products; and (3) well-conducted clinical trials to attest safety and efficacy of extracts and compounds.
Assuntos
Chenopodium quinoa , Chenopodium quinoa/química , Antioxidantes/farmacologia , Antioxidantes/química , Polifenóis , Fibras na Dieta/análise , PolissacarídeosRESUMO
Coffee is a crop of significant socioeconomic importance, and the reuse of agri-food by-products and biowaste has great potential across several industries. Coffee wastewater (CWW) is a valuable resource containing essential nutrients that can be utilized by Candida sorboxylosa for single-cell protein (SCP) production. This utilization contributes to mitigating the negative impacts of agro-industrial waste. The optimization of culture conditions using the design of experiments (DoE) technique is crucial in understanding the environmental factors influencing metabolite production. In our study, the DoE technique was employed to analyze culture conditions, including room temperature, pH 8.4, agitation at 200 rpm, a headspace of 60% (v/v), and an inoculum of 0.75 DO600nm over 28-h period. This approach resulted in a remarkable SCP yield of 64.4% and dry cell weight (DCW) of 2.26 g/L. It is noteworthy that there is no literature reporting SCP production under alkaline pH conditions in yeast. Interestingly, our work demonstrated that an alkaline pH of 8.4 significantly influenced SCP production by C. sorboxylosa. The DoE technique proved to be an efficient statistical tool for optimizing culture conditions, offering several advantages, such as: (i) conducting cultures at room temperature to minimize unnecessary energy consumption; (ii) reducing the incubation time from 46 to 28 h, thereby enhancing overall productivity; (iii) achieving 1.7-fold increase in SCP yield compared to previous basal production levels.
Assuntos
Candida , Coffea , Águas Residuárias , Café , Saccharomyces cerevisiaeRESUMO
In this work production of l-threonine by Escherichia coli ATCC® 21277™ has been studied using a mixture of alternative low-cost substrates, which are recognized to be a major pollution problem. Whey was used as the primary carbon source, whereas Red Tilapia (Oreochromis sp.) viscera hydrolysates constituted the nitrogen source. A Box-Behnken Design was used for optimizing l-threonine and biomass production, using temperature and glucose, whey, and Red Tilapia (Oreochromis sp.) viscera hydrolysate contents as factors. Results indicate that biomass production is affected by the concentration of hydrolysate and temperature. On the other hand, l-threonine production is affected by concentration of whey, hydrolysate, and temperature. In this context, it was possible to maximize l-threonine production, but with a detriment on biomass production. The optimal conditions for biomass and l-threonine maximization (after 24 h) were identified and validated experimentally, resulting in biomass and l-threonine production of 0.767 g/L and 0.406 g/L, respectively. This work has shown the technical feasibility of using whey and Red Tilapia (Oreochromis sp.) viscera hydrolysates for the production of l-threonine by E. coli ATCC® 21277TM. Finally, the complications associated to the use of these low-cost complex substrates for the production of l-threonine by E. coli, suggest that more in detail studies (i.e. at the metabolic level) are required in order to propose strategies to increase the process productivity, before its scale up. This is a first step in our long-term goal of developing a production process for i) dealing with the pollution problems caused by those wastes, and ii) strengthen the milk and fish industries which are important poles of the Colombian economy.
RESUMO
One of the current challenges is to add value to agro-industrial wastes, and the cocoa industry generates about 10 tons of cocoa pod husks in Colombia for each ton of cocoa beans, which are incinerated and cause environmental damage. This study characterized the Colombian cocoa pod husk (CPH) and to isolate and characterize cellulose microfibers (tCPH) extracted via chemical treatment and pressure. Chemical and physical analyses of CPH were performed, and a pretreatment method for CPH fibers was developed, which is followed by a hydrolysis method involving high pressure in an autoclave machine with an alkaline medium (6% NaOH), and finally, bleaching of the fiber to obtain tCPH. The tCPH cellulose microfibers were also chemically and physically analyzed and characterized by infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and thermo-gravimetric analysis (TGA). Chemical and physical characterization showed a decrease in lignin content in tCPH. FTIR analysis showed the absence of some peaks in tCPH with respect to the CPH spectrum; XRD results showed an increase in crystallinity for tCPH compared to CPH, due to a higher presence of crystalline cellulose in tCPH. SEM images included a control fiber treated without high pressure (tCPHnpe), and agglomerated fibers were observed, whereas cellulose microfibers with a mean diameter of 10 ± 2.742 µm were observed in tCPH. Finally, with TGA and DTGA it was confirmed that in tCPH, the hemicellulose and lignin were removed more successfully than in the control fiber (tCPHnpe), showing that the treatment with pressure was effective at isolating the cellulose microfibers from cocoa pod husk.
RESUMO
Reusing agro-industrial waste does not only help to mitigate environmental impact but also enables valorization through the development of new products. The aim is to enhance the physical and mechanical properties of particleboard panels produced with Eucalyptus wood and different proportions of waste products-coconut fiber (Cocos nucifera L.). Physical properties (density, water absorption, and thickness swelling) and mechanical properties (static bending and internal bond resistance) were assessed, and panels reinforced with coconut fiber showed the best qualities with higher density, greater dimensional stability, and less water absorption. Static bending resistance and internal bond resistance also increased significantly. This demonstrated the potential of achieving compatible characteristics for civil construction and furniture production through the inclusion of waste material. The impact of this research is obtained from the utilization of an important agro-industrial residue in the manufacture of permanent composites.
Assuntos
Cocos , Madeira , Madeira/química , Resíduos Industriais/análise , Resíduos/análise , Água/químicaRESUMO
The growing demand for products with lower environmental impact and the extensive applicability of cellulose nanofibrils (CNFs) have received attention due to their attractive properties. In this study, bio-based films/nanopapers were produced with CNFs from banana tree pseudostem (BTPT) wastes and Eucalyptus kraft cellulose (EKC) and were evaluated by their properties, such as mechanical strength, biodegradability, and light transmittance. The CNFs were produced by mechanical fibrillation (after 20 and 40 passages) from suspensions of BTPT (alkaline pre-treated) and EKC. Films/nanopapers were produced by casting from both suspensions with concentrations of 2% (based in dry mass of CNF). The BTPT films/nanopapers showed greater mechanical properties, with Young's modulus and tensile strength around 2.42 GPa and 51 MPa (after 40 passages), respectively. On the other hand, the EKC samples showed lower disintegration in water after 24 h and biodegradability. The increase in the number of fibrillation cycles produced more transparent films/nanopapers and caused a significant reduction of water absorption for both raw materials. The permeability was similar for the films/nanopapers from BTPT and EKC. This study indicated that attractive mechanical properties and biodegradability, besides low cost, could be achieved by bio-based nanomaterials, with potential for being applied as emulsifying agents and special membranes, enabling more efficient utilization of agricultural wastes.
Assuntos
Nanoestruturas , Celulose , Lignina , Resistência à TraçãoRESUMO
Sugarcane straw (SCS) is a common agro-industrial waste that is usually incinerated or discarded in fields after harvesting, increasing the importance of developing added-value applications for this residue. In this study, sustainable biocomposites were produced, and the effect of sugarcane straw as a filler/reinforcement of commercial biopolymers was evaluated. Biocomposites were prepared using polylactic acid (PLA), polyhydroxybutyrate (PHB), polyhydroxybutyrate-co-hydroxyvalerate (PHBV), or green polyethylene (Green-PE) with different fiber contents (20, 30, and 40 wt.%). Dry-blending followed by compression molding was used for the biocomposites preparation. The results showed that PLA, PHB, and PHBV biocomposites retained the same impact strength as the neat matrices, even with 40 wt.% of sugarcane straw. The flexural and tensile modulus of PLA, PHB, and PHBV biocomposites increased with 20% of SCS, whereas, in Green-PE biocomposites, these properties increased at all fiber contents. Since any compatibilizer was used, both the flexural and tensile strength decreased with the addition of SCS. However, even with the highest content of SCS, the tensile and flexural strength values were around 20 MPa, making these materials competitive for specific industrial applications.
RESUMO
Levoglucosan (LGA) is a promising chemical platform derived from the pyrolysis of biomass that offers access to a variety of value-added products. We report an efficient route to produce LGA via the pretreatment of biomass with niobium compounds (oxalate, chloride and oxide) followed by fast pyrolysis coupled with gas chromatography-mass spectrometry (Py-GC-MS) at temperatures of 350-600 °C. Catalytic pretreatment reduces the quantity of lignin in the biomass, concentrates the cellulose and enhance LGA formation during fast pyrolysis. The pretreatment also removes alkaline metals, preventing competitive side reactions. The effect of several parameters such as catalyst weight, time, temperature, and solvent, with the optimal pretreatment conditions determined to be 3 (wt.%) niobium oxalate for 1 h at 23 °C in water. Pretreatment increased the LGA yields by 6.40-fold for sugarcane bagasse, 4.15-fold for elephant grass, 4.13-fold for rice husk, 2.86-fold for coffee husk, and 1.86-fold for coconut husk as compared to the raw biomasses. These results indicate that biomass pretreatment using niobium derivates prior fast pyrolysis can be a promising technique for biomass thermochemical conversion in LGA and others important pyrolytic products.
Assuntos
Nióbio , Pirólise , Biomassa , Glucose/análogos & derivados , Temperatura Alta , LigninaRESUMO
The use of agricultural by-products in the production of biocomposite materials is of growing interest worldwide. Mechanical properties and degradation temperature of a biocomposite depend strongly on the characteristics of the selected reinforcement. The present study focuses on the characterization of three lignocellulosic agro-industrial wastes: olive wet husk (OWH), olive pits (OP) and grape stalks (GS), generated by industries of Cuyo region in Argentina. Such characterization comprises proximate analysis, lignocellulosic composition, functional groups, crystalline phases, mineralogical and elemental composition, and thermal properties. The results obtained are of relevance for understanding the final properties of the biocomposites that will be prepared with these lignocellulosic particles, and will allow to determine which of them is the most appropriate for a specific application. This work suggests that OP could have better interfacial interaction with a polymeric matrix.
Assuntos
Agricultura , Polímeros , Resíduos Industriais , TemperaturaRESUMO
HIGHLIGHTS P. ostreatus and P. sapidus are the most productive species under the evaluated conditions. Different growing systems are suitable for the production of P. ostreatus var. Florida. Temperature control level affects differently the P. ostreatus var. Florida isolates. Environmental and strain factors affect yield and production parameters of P. ostreatus var. Florida.
Abstract In Brazil, Pleurotus is the most important mushroom produced especially P. ostreatus var. Florida. In this country as in many others, the great potential for mushroom cultivation remains unexplored. Therefore, it is very important to develop new studies that allow optimizing its production. The aims of the manuscript were: i) to evaluate the productivity of six different species of Pleurotus (P. citrinopileatus; P. djamor; P. ostreatus; P. ostreatus var. Florida; P. pulmonarius; P. sapidus); ii) to measure the effect of three different environmental conditions during cultivation of three isolates of P. ostreatus var. Florida. As results, P. ostreatus and P. sapidus were the most productive isolates under the evaluated conditions. Different environments produced variable effects according to the P. ostreatus var. Florida isolates, being possible to observe a highly plastic strain (POF 02/18), a highly sensitive strain (POF 03/18) and a strain with variable responses (POF 01/18).
Assuntos
Biodegradação Ambiental , Produção de Alimentos , Pleurotus/isolamento & purificação , Brasil , Agroindústria/métodosRESUMO
The production of biomolecules using agro-industrial by-products as feedstock is a growing trend worldwide. Selenium (Se) is a trace element essential for health, and the Se-enrichment of yeast biomass can enhance its benefits. This study investigated the feasibility of the production of Saccharomyces cerevisiae Se-enriched biomass using a medium composed of corn bran and soybean bran acid hydrolysates as carbon and nitrogen sources in a stirred-tank reactor. After hydrolysis, hydrolysates presented complex composition and high concentrations of sugars, proteins, and minerals. The use of a stirred-tank bioreactor leads to the production of 9 g/L S. cerevisiae biomass enriched with 236.93 µg/g Se, and 99% cell viability. Likewise, the combination of sugarcane molasses and soybean bran hydrolysate was effective for cell growth of a probiotic strain of S. cerevisiae with a 24.08% ß-glucan content. The results demonstrated that starchy acid hydrolysates are low-cost and efficient substrates for the production of yeast biomass and derivate products and may contribute to further studies for a sustainable development of biorefinery technologies.
RESUMO
We investigated the influence of corn steep liquor (CSL) and cassava waste water (CWW) as carbon and nitrogen sources on the morphology and production of biomass and chitosan by Mucor subtilissimus UCP 1262 and Lichtheimia hyalospora UCP 1266. The highest biomass yields of 4.832 g/L (M. subtilissimus UCP 1262) and 6.345 g/L (L. hyalospora UCP 1266) were produced in assay 2 (6% CSL and 4% CWW), factorial design 22, and also favored higher chitosan production (32.471 mg/g) for M. subtilissimus. The highest chitosan production (44.91 mg/g) by L. hyalospora (UCP 1266) was obtained at the central point (4% of CWW and 6% of CSL). The statistical analysis, the higher concentration of CSL, and lower concentration of CWW significantly contributed to the growth of the strains. The FTIR bands confirmed the deacetylation degree of 80.29% and 83.61% of the chitosan produced by M. subtilissimus (UCP 1262) and L. hyalospora (UCP 1266), respectively. M. subtilissimus (UCP 1262) showed dimorphism in assay 4-6% CSL and 8% CWW and central point. L. hyalospora (UCP 1266) was optimized using a central composite rotational design, and the highest yield of chitosan (63.18 mg/g) was obtained in medium containing 8.82% CSL and 7% CWW. The experimental data suggest that the use of CSL and CWW is a promising association to chitosan production.
Assuntos
Quitosana/metabolismo , Mucor/crescimento & desenvolvimento , Mucorales/crescimento & desenvolvimento , Acetilação , Biomassa , Carbono/metabolismo , Manihot/química , Mucor/metabolismo , Mucorales/metabolismo , Nitrogênio/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Águas Residuárias/química , Zea mays/químicaRESUMO
Cacay oil and butter were evaluated as enzymatic inducers for lipase production from Aspergillus terreus NRRL-255 by solid-state fermentation (SSF). Initially, physicochemical characteristics of agro-industrial wastes were evaluated in order to identify a potential solid substrate for lipase production. Higher water absorption index (3.65 g H2O/g substrate), adequate mineral content, great carbon source, and nitrogen concentration were factors that influenced the choice of wheat bran as a solid substrate. Cacay butter presented the highest lipolytic activity (308.14 U g-1) in the screening of lipid inducer. Then, the effects of lipid inducer concentration (cacay butter), temperature, pH, moisture, and fermentation time were evaluated on process performance using multivariate statistical methodology. Under optimal conditions, the highest lipase activity observed was 2,867.18 U g-1. Regarding the lipase characterization, maximum relative activity was obtained at pH 7.0 and at 35 °C. An inhibitory effect was observed for Ca2+, Mn2+, Zn2+, Fe2+, and Cu2+ ions. Lipase activity was increased with the reduction of sodium dodecyl sulfate (SDS) concentration and the increase of Triton X-100. Therefore, the use of wheat bran as a solid substrate combined with cacay butter demonstrated a substantial lipase production, indicating its biotechnological industrial potential.
Assuntos
Aspergillus/enzimologia , Fibras na Dieta/metabolismo , Microbiologia Industrial/métodos , Lipase/biossíntese , Carbono , Cromatografia Gasosa , Óleo de Coco , Ácidos Graxos/química , Fermentação , Concentração de Íons de Hidrogênio , Resíduos Industriais , Íons , TemperaturaRESUMO
Although tannery effluent (TE) toxicity has already been demonstrated in different vertebrate models, our knowledge about their effects on birds remains significantly incipient. Thus, the aim of the current study was to evaluate the impact of ephemeral exposure of Gallus gallus domesticus eggs to environmental predictive TE dilutions (1.4% and 6.5%). Eggs at E6 developmental stage were opened in order to assess embryos' external morphology and genotoxic biomarkers. Based on our data, embryos exposed in ovo to TE recorded higher mortality rate, lower biomass and different morphological abnormalities such as optic vesicle depigmentation, pericardial and encephalic edemas, as well as body rotation error. Embryos exposed to TE showed lower crown-rump length head and anterior-posterior length, as well as reduced beak size. Embryos exposed to the highest TE dilution (6.5%) also showed greater lower/upper limb development, larger optic vesicle area and smaller crystalline lens area than the other groups. On the other hand, differences in mitotic index were not observed between groups; however, total erythrocyte chromosomal abnormalities, mainly in metaphase and anaphase, were higher in embryos exposed to TE. These phases presented chromosome fragments formed from typical chromosome breakage, laggard chromosome and chromosome bridge. Higher Cr, Mn and Zn concentrations in embryos exposed to TE strongly suggest that the observed abnormalities were directly associated with the absorption of chemical constituents. The present study is pioneer in investigating the morphotoxic and genotoxic potential of TE (a complex mixture of various xenobiotics) in bird embryos in order to better understand the eco (toxicological) magnitude of this pollutant in aquatic ecosystems.
Assuntos
Resíduos Industriais/análise , Curtume , Poluentes Químicos da Água/toxicidade , Animais , Galinhas , Dano ao DNA , Ecossistema , Embrião não Mamífero , Eritrócitos/efeitos dos fármacos , Poluentes Químicos da Água/análiseRESUMO
The processing of grapes for the manufacture of juices and wines, generates large quantities of by-products rich in metabolites with antioxidant, antimicrobial, anti-inflammatory and cicatrizing activities. The high homology between human enzymes and snake venoms makes the latter valuable laboratory tools for the study of pathophysiological processes. Proteases and phospholipases A2 act in processes related to hemostasis and inflammatory response. Thus, in this work, dried pomace obtained from grape (Isabel, Niagara, Bordô, BRS Violeta and Blend cultivars) processing were evaluated on phospholipase, proteolytic, hemolytic and thrombolytic activities induced by snakes venoms and the content of phenolic compounds and minerals was evaluated. The dried pomace exerted inhibitory and potentiating actions in all analyzed activities. The enzymatic modulators present in the evaluated dried pomace have potential for therapeutic use, although their broad characterization is still necessary, in order to define adequate amounts and formulations to obtain efficacy and safety in their use.
Assuntos
Venenos de Serpentes/efeitos adversos , Vinho/classificação , Enzimas/análise , Compostos Fenólicos/análise , Fosfolipases A2/análise , Vitis/classificação , Resíduos Industriais/análiseRESUMO
Endoglucanases are enzymes widely employed in different industrial fields, albeit with high production costs. Studies on new microbial sources and low-cost substrates are highly relevant, including those on agro-industrial. Current analysis evaluates peanut hull (PH) and sawdust (SD) as substrates for submerged cultures of 14 endophytic fungi isolated from grapevine (Vitis labrusca L.) cultivars Bordô and Concord. Endophytes were grown on a carboxymethylcellulose (CMC) medium and the cup plate assay showed that eight strains (belonging to genera Cochliobolus, Diaporthe, Fusarium and Phoma) had positive results: enzymatic halos ranged from 10.8±0.02to 15.5±0.07 mm in diameter. Diaporthe sp. strains (GenBank accession codes KM362392, KM362368 and KM362378) and Fusariumculmorum KM362384 were highlighted as the most promising sources. Further, PH and SD as substrates for the fermentation of these fungi were evaluated by the cup plate assay and endoglucanase activity assay. Highest halo diameters were obtained for Diaporthe sp. KM362392: 16.1±0.01 mm (CMC), 14.5±0.01 mm (PH) and 14.7±0.03 mm (SD). The fungus also presented the highest levels of endoglucanase activity: analysis of variance revealed that CMC (3.52±0.98 µmol/min), PH (2.93±0.23 µmol/min) and SD (3.26±0.38 µmol/min) were similarly efficient as substrates. Results deepen knowledge on V. labrusca endophytes that may be endoglucanase sources, eventhough further optimizations in submerged cultures with PH and SD should be undertaken to increase theenzymatic production from these wastes.
Endoglucanases são enzimas amplamente empregadas em diferentes setores industriais; embora sua produção apresente custos elevados. Estudos sobre novas fontes microbianas e substratos mais baratos são de grande importância, incluindo os resíduos agroindustriais. Nesse estudo, casca de amendoim (CA) e serragem (SE) foram testadas como substratos para o cultivo submerso de 14 fungos endofíticos isolados das cultivares Bordô e Concord de videira (Vitis labrusca L.) Os endófitos foram crescidos em meio contendo carboximetilcelulose (CMC) e o ensaio cup plate mostrou resultados positivos para oito fungos (pertencentes aos gêneros Cochliobolus, Diaporthe, Fusarium and Phoma); os halos enzimáticos variaram entre 10,8±0,02 e 15,5±0,07 mm de diâmetro. Linhagens de Diaporthe sp. (códigos de acesso no GenBank KM362392, KM362368 e KM362378) e Fusariumculmorum KM362384 se destacaram como produtores mais promissores. Então, o uso de CA e SE como substratos para a fermentação desses fungos foi avaliado pelo ensaio cup plate e pela quantificação da atividade de endoglucanase. Os maiores halos enzimáticos foram obtidos para Diaporthe sp. KM362392: 16,1±0,01 mm (CMC), 14,5±0,01 mm (CA) e 14,7±0,03 mm (SE). Esse fungo também apresentou os maiores níveis de endoglucanase: a análise de variância revelou que CMC (3,52±0,98 µmol/min), CA (2,93±0,23 µmol/min) e SE (3,26±0,38 µmol/min) foram substratos similarmente eficientes. Esses resultados expandem o conhecimento sobre endófitos de V. labrusca que são fontes de endoglucanases; futuras otimizações quanto ao cultivo submerso com CA e SE podem ser utilizadas para aumentar a produção enzimática a partir do uso desses resíduos.
Assuntos
Resíduos , Celulase , Substratos para Tratamento Biológico , Enzimas , Agroindústria , EndófitosRESUMO
BACKGROUND: The use of agro-industrial wastes to produce high value-added biomolecules such as biosurfactants is a promising approach for lowering the total costs of production. This study aimed to produce biosurfactants using Rhizopus arrhizus UCP 1607, with crude glycerol (CG) and corn steep liquor (CSL) as substrates. In addition, the biomolecule was characterized, and its efficiency in removing petroderivatives from marine soil was investigated. RESULTS: A 22 factorial design was applied, and the best condition for producing the biosurfactant was determined in assay 4 (3% CG and 5% CSL). The biosurfactant reduced the surface tension of water from 72 to 28.8 mN/m and produced a yield of 1.74 g/L. The preliminary biochemical characterization showed that the biosurfactant consisted of proteins (38.0%), carbohydrates (35.4%), and lipids (5.5%). The compounds presented an anionic character, nontoxicity, and great stability for all conditions tested. The biomolecule displayed great ability in dispersing hydrophobic substrates in water, thereby resulting in 53.4 cm2 ODA. The best efficiency of the biosurfactant in removing the pollutant diesel oil from marine soil was 79.4%. CONCLUSIONS: This study demonstrated the ability of R. arrhizus UCP1607 to produce a low-cost biosurfactant characterized as a glycoprotein and its potential use in the bioremediation of the hydrophobic diesel oil pollutant in marine soil
Assuntos
Rhizopus/metabolismo , Tensoativos/metabolismo , Gasolina , Solo , Tensoativos/toxicidade , Tensão Superficial , Biodegradação Ambiental , Ambiente Marinho , Zea mays , Agroindústria , Interações Hidrofóbicas e Hidrofílicas , Glicerol , Resíduos Industriais , Micelas , Mucorales/metabolismoRESUMO
Fique fibers, native to Colombia, are traditionally used for ropes and bags. In the extraction of long fibers for these purposes, the same amount of short fibers is generated; the short fibers are then discarded in the soil or in landfills. This agro-industrial waste is cellulose-rich and can be potentially developed into new biobased products. As an alternative use for these fibers, viscose regenerated fibers with potential applications in the textile industry were developed. Fique waste fibers were pulped (to produce fique cellulose pulp, FCP) using a 3³ design of experiment (DOE) to adjust the variables of the whitening treatment, and DOE analysis showed that time and hydrogen peroxide concentration do not have a significant effect on non-cellulosic remotion, unlike temperature. The behavior of this pulp in the production of viscose was compared against that of commercially available wood cellulose pulp (WCP). FCP showed a suitable cellulose content with a high degree of polymerization, which makes it a viable pulp for producing discontinuous viscose rayon filaments. Both pulps showed the same performance in the production of the viscose dope and the same chemical, thermal, and mechanical behavior after being regenerated.