Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PNAS Nexus ; 3(9): pgae306, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39285936

RESUMO

During outbreaks of emerging infectious diseases, internationally connected cities often experience large and early outbreaks, while rural regions follow after some delay. This hierarchical structure of disease spread is influenced primarily by the multiscale structure of human mobility. However, during the COVID-19 epidemic, public health responses typically did not take into consideration the explicit spatial structure of human mobility when designing nonpharmaceutical interventions (NPIs). NPIs were applied primarily at national or regional scales. Here, we use weekly anonymized and aggregated human mobility data and spatially highly resolved data on COVID-19 cases at the municipality level in Mexico to investigate how behavioral changes in response to the pandemic have altered the spatial scales of transmission and interventions during its first wave (March-June 2020). We find that the epidemic dynamics in Mexico were initially driven by exports of COVID-19 cases from Mexico State and Mexico City, where early outbreaks occurred. The mobility network shifted after the implementation of interventions in late March 2020, and the mobility network communities became more disjointed while epidemics in these communities became increasingly synchronized. Our results provide dynamic insights into how to use network science and epidemiological modeling to inform the spatial scale at which interventions are most impactful in mitigating the spread of COVID-19 and infectious diseases in general.

2.
Expert Syst Appl ; 182: 115190, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34025047

RESUMO

In 2020, Brazil was the leading country in COVID-19 cases in Latin America, and capital cities were the most severely affected by the outbreak. Climates vary in Brazil due to the territorial extension of the country, its relief, geography, and other factors. Since the most common COVID-19 symptoms are related to the respiratory system, many researchers have studied the correlation between the number of COVID-19 cases with meteorological variables like temperature, humidity, rainfall, etc. Also, due to its high transmission rate, some researchers have analyzed the impact of human mobility on the dynamics of COVID-19 transmission. There is a dearth of literature that considers these two variables when predicting the spread of COVID-19 cases. In this paper, we analyzed the correlation between the number of COVID-19 cases and human mobility, and meteorological data in Brazilian capitals. We found that the correlation between such variables depends on the regions where the cities are located. We employed the variables with a significant correlation with COVID-19 cases to predict the number of COVID-19 infections in all Brazilian capitals and proposed a prediction method combining the Ensemble Empirical Mode Decomposition (EEMD) method with the Autoregressive Integrated Moving Average Exogenous inputs (ARIMAX) method, which we called EEMD-ARIMAX. After analyzing the results poor predictions were further investigated using a signal processing-based anomaly detection method. Computational tests showed that EEMD-ARIMAX achieved a forecast 26.73% better than ARIMAX. Moreover, an improvement of 30.69% in the average root mean squared error (RMSE) was noticed when applying the EEMD-ARIMAX method to the data normalized after the anomaly detection.

3.
Spat Spatiotemporal Epidemiol ; 29: 163-175, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31128626

RESUMO

Typical spatial disease surveillance systems associate a single address to each disease case reported, usually the residence address. Social network data offers a unique opportunity to obtain information on the spatial movements of individuals as well as their disease status as cases or controls. This provides information to identify visit locations with high risk of infection, even in regions where no one lives such as parks and entertainment zones. We develop two probability models to characterize the high-risk regions. We use a large Twitter dataset from Brazilian users to search for spatial clusters through analysis of the tweets' locations and textual content. We apply our models to both real-world and simulated data, demonstrating the advantage of our models as compared to the usual spatial scan statistic for this type of data.


Assuntos
Dengue/epidemiologia , Vigilância da População , Rede Social , Aedes/fisiologia , Animais , Brasil/epidemiologia , Análise por Conglomerados , Dengue/etiologia , Dengue/prevenção & controle , Humanos , Fatores de Risco , Análise Espacial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA