Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39113392

RESUMO

Schimke Immuno-Osseous Dysplasia (SIOD) (MIM:242900) is an ultra-rare autosomal recessive pan-ethnic pleiotropic disease. Typical findings of this syndrome are steroid-resistant nephrotic syndrome, cellular immunodeficiency and spondyloepiphyseal dysplasia and facial dysmorphism. Biallelic variants in the SMARCAL1 gene cause SIOD. The five-and-half-year-old female patient was evaluated because of short stature, dysmorphism, hypercalcemia, hypophosphatemia and elevated FSH levels. Karyotype analysis and array-CGH testing were normal. Clinical Exome Sequencing was performed via next-generation sequencing to analyze genes associated with hypophosphatemia. No pathogenic variant was detected. The subsequent detection of proteinuria during her follow-up for cross-fused ectopic left kidney ultimately facilitated the diagnosis of SIOD, although no obvious spondyloepiphyseal dysplasia was detected. Re-analysis of CES revealed a novel homozygous c.2422_2427+9delinsA pathogenic variant in the SMARCAL1. One hundred twenty-five SIOD cases from 38 literature reporting SMARCAL1 gene pathogenic variants were reviewed to investigate whether hypercalcemia, hypophosphatemia and elevated FSH levels had been previously reported in SIOD patients. This review revealed that this was the first time these findings had been reported in a SIOD patient. This report expands not only the phenotypic but also genotypic spectrum of SIOD.

2.
Heliyon ; 10(12): e33110, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39021990

RESUMO

Background: The Alternative Lengthening of Telomeres (ALT) pathway represents a non-canonical mechanism of telomere maintenance that operates independently of the conventional telomerase activity. The three biologically significant proteins, designated as SMARCAL1 (SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A-like protein 1), DAXX (Death domain-associated protein 6) and ATRX (alpha-thalassemia/mental retardation, X-linked) are associated with ALT in certain cancer types. The purpose of this study was to identify the most high-risk nsSNPs (non-synonymous Single Nucleotide Polymorphisms) within these three genes and assess their impacts on the structure and function of the proteins they encode. Methods: The reported genetic polymorphisms of SMARCAL1, DAXX and ATRX genes were retrieved from the Ensembl database. Later, various computational tools like PROVEAN, PolyPhen2, SNPs and GO, SNAP2, Predict-SNP, Panther and PMut were used to predict the most deleterious nsSNPs. MutPred was used to understand the underlying molecular reasons of those nsSNPs being deleterious, followed by prediction of Post Translational Modification Sites (PTMs) using ModPred. I-Mutant and MUpro were used to predict the effect of SNP on energy stability. Later, 3D clustering analysis was done using Mutation 3D server. Moreover, ConSurf was utilized to identify the conservation scores of wild-type amino acids. Additionally, the NCBI conserved domain search tool was employed to pinpoint conserved domains within these three proteins. Project-Hope helped for biophysical validation, followed by prediction of these genes' interaction and function by using GeneMANIA. Result: Analysis on SMARCAL1 protein revealed that among 665 nsSNPs, four were identified as the most deleterious: L578S, T581S, P582A, and P582S. Similarly, within the DAXX protein, among a pool of 480 nsSNPs, P284S, R230C, and R230S were found out to be the most deleterious variants. In case of ATRX protein, V178D, R246C, and V277G, from the total of 1009 nsSNPs, were predicted to be the most deleterious. All these nsSNPs were found to occur at residue positions that are 100 % conserved within protein domains and were predicted to be most damaging from both structural and functional perspectives and highly destabilizing to their corresponding proteins. Conclusion: Computational investigation on the 3 proteins-SMARCAL1, DAXX and ATRX through different bioinformatics analysis tools concludes that the identified high risk nsSNPs of these proteins are pathogenic SNPs. These variants potentially exert functional and structural influences, thus making them valuable candidates for future genetic studies.

3.
Aging Cell ; : e14281, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39044358

RESUMO

Over a lifetime, hematopoietic stem and progenitor cells (HSPCs) are forced to repeatedly proliferate to maintain hematopoiesis, increasing their susceptibility to DNA damaging replication stress. However, the proteins that mitigate this stress, protect HSPC replication, and prevent aging-driven dysregulation are unknown. We report two evolutionarily conserved, ubiquitously expressed chromatin remodeling enzymes with similar DNA replication fork reversal biochemical functions, Zranb3 and Smarcal1, have surprisingly specialized roles in distinct HSPC populations. While both proteins actively mitigate replication stress and prevent DNA damage and breaks during lifelong hematopoiesis, the loss of either resulted in distinct biochemical and biological consequences. Notably, defective long-term HSC function, revealed with bone marrow transplantation, caused hematopoiesis abnormalities in young mice lacking Zranb3. Aging significantly worsened these hematopoiesis defects in Zranb3-deficient mice, including accelerating the onset of myeloid-biased hematopoietic dysregulation to early in life. Such Zranb3-deficient HSPC abnormalities with age were driven by accumulated DNA damage and replication stress. Conversely, Smarcal1 loss primarily negatively affected progenitor cell functions that were exacerbated with aging, resulting in a lymphoid bias. Simultaneous loss of both Zranb3 and Smarcal1 compounded HSPC defects. Additionally, HSPC DNA replication fork dynamics had unanticipated HSPC type and age plasticity that depended on the stress and Zranb3 and/or Smarcal1. Our data reveal both Zranb3 and Smarcal1 have essential HSPC cell intrinsic functions in lifelong hematopoiesis that protect HSPCs from replication stress and DNA damage in unexpected, unique ways.

4.
Cancer Lett ; 592: 216929, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38697461

RESUMO

Small cell lung cancer (SCLC) is a recalcitrant cancer characterized by high frequency loss-of-function mutations in tumor suppressors with a lack of targeted therapy due to absence of high frequency gain-of-function abnormalities in oncogenes. SMARCAL1 is a member of the ATP-dependent chromatin remodeling protein SNF2 family that plays critical roles in DNA damage repair and genome stability maintenance. Here, we showed that SMARCAL1 was overexpressed in SCLC patient samples and was inversely associated with overall survival of the patients. SMARCAL1 was required for SCLC cell proliferation and genome integrity. Mass spectrometry revealed that PAR6B was a downstream SMARCAL1 signal molecule which rescued inhibitory effects caused by silencing of SMARCAL1. By screening of 36 FDA-approved clinically available agents related to DNA damage repair, we found that an aza-anthracenedione, pixantrone, was a potent SMARCAL1 inhibitor which suppressed the expression of SMARCAL1 and PAR6B at protein level. Pixantrone caused DNA damage and exhibited inhibitory effects on SCLC cells in vitro and in a patient-derived xenograft mouse model. These results indicated that SMARCAL1 functions as an oncogene in SCLC, and pixantrone as a SMARCAL1 inhibitor bears therapeutic potentials in this deadly disease.


Assuntos
Proliferação de Células , DNA Helicases , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/patologia , Carcinoma de Pequenas Células do Pulmão/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Animais , DNA Helicases/genética , DNA Helicases/metabolismo , Proliferação de Células/efeitos dos fármacos , Camundongos , Linhagem Celular Tumoral , Dano ao DNA , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos
5.
Cell ; 187(4): 861-881.e32, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38301646

RESUMO

Genomic instability can trigger cancer-intrinsic innate immune responses that promote tumor rejection. However, cancer cells often evade these responses by overexpressing immune checkpoint regulators, such as PD-L1. Here, we identify the SNF2-family DNA translocase SMARCAL1 as a factor that favors tumor immune evasion by a dual mechanism involving both the suppression of innate immune signaling and the induction of PD-L1-mediated immune checkpoint responses. Mechanistically, SMARCAL1 limits endogenous DNA damage, thereby suppressing cGAS-STING-dependent signaling during cancer cell growth. Simultaneously, it cooperates with the AP-1 family member JUN to maintain chromatin accessibility at a PD-L1 transcriptional regulatory element, thereby promoting PD-L1 expression in cancer cells. SMARCAL1 loss hinders the ability of tumor cells to induce PD-L1 in response to genomic instability, enhances anti-tumor immune responses and sensitizes tumors to immune checkpoint blockade in a mouse melanoma model. Collectively, these studies uncover SMARCAL1 as a promising target for cancer immunotherapy.


Assuntos
Antígeno B7-H1 , DNA Helicases , Imunidade Inata , Melanoma , Evasão Tumoral , Animais , Camundongos , Antígeno B7-H1/metabolismo , Instabilidade Genômica , Melanoma/imunologia , Melanoma/metabolismo , DNA Helicases/metabolismo
6.
Pathol Res Pract ; 254: 155092, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38218042

RESUMO

Schimke immuno-osseous dysplasia (SIOD) is a rare multi-system condition caused by biallelic loss-of-function mutations in the SMARCAL1 gene. This disorder is characterized by disproportionate growth failure, T-cell deficiency, and renal dysfunction. Pathogenic variants in the SMARCAL1 gene have been reported in only approximately half of SIOD-affected individuals. Among these alterations, nonsense and frameshift mutations generally lead to a severe phenotype with early onset. In this study, we identified novel mutations in an Iranian patient with SIOD. A 4-year-old girl with developmental delay and facial dysmorphism was referred to our center for molecular diagnosis. We applied whole-exome and Sanger sequencing for co-segregation analysis. Subsequently, bioinformatic analysis was performed to assess the pathogenic effects of the variants and their post-transcriptional effects. We discovered two novel mutations (c.2281delT and c.2283delA) in exon 15 of the SMARCAL1 gene, resulting in a truncated protein with a loss of 193 amino acids (p.S761Rfs*1). Variant effect predictors indicated that these variants are pathogenic, and multi-sequence alignments revealed high conservation of this region among different species. Given that our patient exhibited severe a phenotype and passed away soon after receiving a definitive molecular diagnosis, we propose that the loss of the helicase C-terminal domain in the deleted part of SMARCAL1 may lead to the severe form of SIOD. Besides, the combination of growth retardation and bone abnormalities also plays a crucial role in the early diagnosis of the disease.


Assuntos
Arteriosclerose , Síndromes de Imunodeficiência , Síndrome Nefrótica , Osteocondrodisplasias , Doenças da Imunodeficiência Primária , Embolia Pulmonar , Feminino , Humanos , Pré-Escolar , Irã (Geográfico) , Doenças da Imunodeficiência Primária/genética , Doenças da Imunodeficiência Primária/complicações , Síndromes de Imunodeficiência/genética , Síndromes de Imunodeficiência/complicações , Síndromes de Imunodeficiência/metabolismo , Síndrome Nefrótica/diagnóstico , Síndrome Nefrótica/genética , Síndrome Nefrótica/complicações , DNA Helicases/genética
7.
Neuro Oncol ; 25(9): 1563-1575, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-36689342

RESUMO

BACKGROUND: Telomere maintenance mechanisms are required to enable the replicative immortality of malignant cells. While most cancers activate the enzyme telomerase, a subset of cancers uses telomerase-independent mechanisms termed alternative lengthening of telomeres (ALT). ALT occurs via homology-directed-repair mechanisms and is frequently associated with ATRX mutations. We previously showed that a subset of adult glioblastoma (GBM) patients with ATRX-expressing ALT-positive tumors harbored loss-of-function mutations in the SMARCAL1 gene, which encodes an annealing helicase involved in replication fork remodeling and the resolution of replication stress. However, the causative relationship between SMARCAL1 deficiency, tumorigenesis, and de novo telomere synthesis is not understood. METHODS: We used a patient-derived ALT-positive GBM cell line with native SMARCAL1 deficiency to investigate the role of SMARCAL1 in ALT-mediated de novo telomere synthesis, replication stress, and gliomagenesis in vivo. RESULTS: Inducible rescue of SMARCAL1 expression suppresses ALT indicators and inhibits de novo telomere synthesis in GBM and osteosarcoma cells, suggesting that SMARCAL1 deficiency plays a functional role in ALT induction in cancers that natively lack SMARCAL1 function. SMARCAL1-deficient ALT-positive cells can be serially propagated in vivo in the absence of detectable telomerase activity, demonstrating that the SMARCAL1-deficient ALT phenotype maintains telomeres in a manner that promotes tumorigenesis. CONCLUSIONS: SMARCAL1 deficiency is permissive to ALT and promotes gliomagenesis. Inducible rescue of SMARCAL1 in ALT-positive cell lines permits the dynamic modulation of ALT activity, which will be valuable for future studies aimed at understanding the mechanisms of ALT and identifying novel anticancer therapeutics that target the ALT phenotype.


Assuntos
Glioblastoma , Telomerase , Humanos , Telomerase/genética , Telomerase/metabolismo , Glioblastoma/genética , Homeostase do Telômero , Mutação , Telômero/genética , Telômero/metabolismo , Carcinogênese , Transformação Celular Neoplásica/genética , DNA Helicases/genética , DNA Helicases/metabolismo
8.
Front Immunol ; 13: 979722, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36330520

RESUMO

Schimke immuno-osseous dysplasia (SIOD) caused by mutations in SMARCAL1 is an ultra-rare disease characterized by specific facial features, skeletal dysplasia, and steroid-resistant nephrotic syndrome, which often leads to kidney failure and requires transplantation. Cellular (T-cell) deficiency, lymphopenia, and infections have been frequently reported, but whether they are due to T-cell-intrinsic defects in T-cell receptor (TCR) signaling associated with SMARCAL1 deficiency or to T-cell-extrinsic effects such as the impaired proliferation of hematopoietic precursors or T-cell-specific immunosuppression after renal transplantation remains unknown. We have explored the effects of SMARCAL1 deficiency on T-cell receptor signaling in primary and immortalized T cells from a 9-year-old SIOD patient under immunosuppression treatment when compared to healthy donors. Immortalized T cells recapitulated the SMARCAL1 deficiency of the patient, as judged by their impaired response to gamma irradiation. The results indicated that TCR-mediated signaling was normal in SIOD-derived immortalized T cells but strongly impaired in the primary T cells of the patient, although rescued with TCR-independent stimuli such as PMA + ionomycin, suggesting that SIOD-associated T-cell signaling is not intrinsically defective but rather the result of the impaired proliferation of hematopoietic precursors or of T-cell-specific immunosuppression. The lack of early thymic emigrants in our patients may support the former hypothesis.


Assuntos
Síndromes de Imunodeficiência , Síndrome Nefrótica , Criança , Humanos , DNA Helicases/genética , DNA Helicases/metabolismo , Síndromes de Imunodeficiência/genética , Síndromes de Imunodeficiência/complicações , Síndrome Nefrótica/genética , Receptores de Antígenos de Linfócitos T/genética , Transdução de Sinais
9.
Int J Mol Sci ; 23(15)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35955746

RESUMO

The rescue of stalled DNA replication forks is essential for cell viability. Impeded but still intact forks can be rescued by atypical DNA helicases in a reaction known as fork regression. This reaction has been studied at the single-molecule level using the Escherichia coli DNA helicase RecG and, separately, using the eukaryotic SMARCAL1 enzyme. Both nanomachines possess the necessary activities to regress forks: they simultaneously couple DNA unwinding to duplex rewinding and the displacement of bound proteins. Furthermore, they can regress a fork into a Holliday junction structure, the central intermediate of many fork regression models. However, there are key differences between these two enzymes. RecG is monomeric and unidirectional, catalyzing an efficient and processive fork regression reaction and, in the process, generating a significant amount of force that is used to displace the tightly-bound E. coli SSB protein. In contrast, the inefficient SMARCAL1 is not unidirectional, displays limited processivity, and likely uses fork rewinding to facilitate RPA displacement. Like many other eukaryotic enzymes, SMARCAL1 may require additional factors and/or post-translational modifications to enhance its catalytic activity, whereas RecG can drive fork regression on its own.


Assuntos
Replicação do DNA , Proteínas de Escherichia coli , DNA Helicases/metabolismo , DNA Cruciforme/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Eucariotos/genética
10.
Front Cell Dev Biol ; 10: 870815, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35784471

RESUMO

SMARCAL1 and BRG1, both classified as ATP-dependent chromatin remodeling proteins, play a role in double-strand break DNA damage response pathways. Mutations in SMARCAL1 cause Schimke Immuno-osseous Dysplasia (SIOD) while mutations in BRG1 are associated with Coffin-Siris Syndrome (CSS4). In HeLa cells, SMARCAL1 and BRG1 co-regulate the expression of ATM, ATR, and RNAi genes on doxorubicin-induced DNA damage. Both the proteins are found to be simultaneously present on the promoter of these genes. Based on these results we hypothesized that SMARCAL1 and BRG1 interact with each other forming a complex. In this paper, we validate our hypothesis and show that SMARCAL1 and BRG1 do indeed interact with each other both in the absence and presence of doxorubicin. The formation of these complexes is dependent on the ATPase activity of both SMARCAL1 and BRG1. Using deletion constructs, we show that the HARP domains of SMARCAL1 mediate interaction with BRG1 while multiple domains of BRG1 are probably important for binding to SMARCAL1. We also show that SIOD-associated mutants fail to form a complex with BRG1. Similarly, CSS4-associated mutants of BRG1 fail to interact with SMARCAL1, thus, possibly contributing to the failure of the DNA damage response pathway and pathophysiology associated with SIOD and CSS4.

11.
Cureus ; 14(6): e25838, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35836429

RESUMO

Schimke immuno-osseous dysplasia (SIOD) is an uncommon autosomal recessive (AR) spondylo-epiphyseal dysplasia (SED) and its clinical course and phenotype are yet to be properly described. The phenotypic presentation is quite varied with involvement of the renal, skeletal, vascular, immune, and hematopoietic systems being the most common presentation. We describe a 19-year-old female who presented with adolescent-onset brain and skeletal involvement without renal manifestations. Based on imaging and clinical features, she was diagnosed with a case of SIOD. There is no definitive treatment yet for this disorder, however, clinicians should be aware of this disorder so that adequate counseling and symptomatic management, especially in controlling hypertension and dyslipidemia, can be provided to the affected patients.

12.
Artigo em Inglês | MEDLINE | ID: mdl-35209826

RESUMO

BACKGROUND: Schimke immuno-osseous dysplasia (SIOD) is a very rare autosomal recessive genetic disease caused by mutations in the SMARCAL1 gene. It is characterized by spondyloepiphyseal dysplasia, T-cell immunodeficiency, hypercromic nevi, hypercholestero-lemia, and steroid-resistant nephrotic syndrome with progressive renal failure to end-stage kidney disease. CASE PRESENTATION: We report two cases of SIOD in sisters, diagnosed after the debut of nephrotic syndrome. Both had a personal history of short stature, acetabular hip dysplasia, and hypercholesterolemia. The first case, a 6-year-old girl, presented peripheral refractory edema, severe arterial hypertension, and progressive decrease of the glomerular filtration rate. Steroid-resistance of nephrotic syndrome was confirmed, treated with tacrolimus without response. Renal function worsened over the following 4 months, so haemodialysis was started. Her sister, a 5-year-old girl, had the steroid-resistant nephrotic syndrome and normal blood pressure and renal function under enalapril treatment. In view of the suspicion of SIOD, genetic studies were carried out, revealing the same mutation in homozygosis. CONCLUSION: SIOD has a variable expression with multi-systemic involvement with a short life expectancy. Early diagnosis is important, which can encourage the early start of treatment and anticipation of complications that may be life-threatening.


Assuntos
Síndrome Nefrótica , Osteocondrodisplasias , Arteriosclerose , DNA Helicases , Feminino , Humanos , Mutação , Fenótipo , Doenças da Imunodeficiência Primária , Embolia Pulmonar , Esteroides
13.
Methods ; 204: 348-360, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34896247

RESUMO

There are multiple assays available that can provide insight into the biochemical mechanism of DNA helicases. For the first 22 years since their discovery, bulk-phase assays were used. These include gel-based, spectrophotometric, and spectrofluorometric assays that revealed many facets of these enzymes. From 2001, single-molecule studies have contributed additional insight into these DNA nanomachines to reveal details on energy coupling, step size, processivity as well as unique aspects of individual enzyme behavior that were masked in the averaging inherent in ensemble studies. In this review, important aspects of the study of helicases are discussed including beginning with active, nuclease-free enzyme, followed by several bulk-phase approaches that have been developed and still find widespread use today. Finally, two single-molecule approaches are discussed, and the resulting findings are related to the results obtained in bulk-phase studies.


Assuntos
DNA Helicases , DNA , DNA/química , DNA Helicases/química , DNA Helicases/genética
14.
Sci Total Environ ; 807(Pt 3): 151078, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34715232

RESUMO

Cadmium (Cd) is a well-known carcinogenic metal and widespread environmental pollutant. The effect of Cd-induced carcinogenesis is partly due to accumulated DNA damage and chromosomal aberrations, but the exact mechanisms underlying the genotoxicity of Cd have not been clearly understood. Here, we found that one long non-coding RNA MT1DP is participated in Cd-induced DNA damage and replication stress. Through analyzing the residents from Cd-contaminated area in Southern China, we found that blood DNA repair genes are down-regulated in individuals with high urine Cd values compared to those with low urine Cd values, which contrast to the blood MT1DP levels. Through in vitro experiments, we found that MT1DP promotes Cd-induced DNA damage response, genome instability and replication fork stalling. Mechanically, upon Cd treatment, ATR is activated to enhance HIF-1α expression, which in turn promotes the transcription level of MT1DP. Subsequently MT1DP is recruited on the chromatin and binds to SMARCAL1 to competitive inhibit latter's interaction with RPA complexes, finally leading to increased replication stress and DNA damage. In summary, this study provides clear evidence for the role of epigenetic regulation on the genotoxic effect of Cd, and MT1DP-mediated replication stress may represent a novel mechanism for Cd-induced carcinogenesis.


Assuntos
RNA Longo não Codificante , Cádmio/toxicidade , Cromatina , DNA Helicases , Replicação do DNA , Epigênese Genética , Humanos
15.
Semin Cell Dev Biol ; 113: 27-37, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33967572

RESUMO

DNA replication is laden with obstacles that slow, stall, collapse, and break DNA replication forks. At each obstacle, there is a decision to be made whether to bypass the lesion, repair or restart the damaged fork, or to protect stalled forks from further demise. Each "decision" draws upon multitude of proteins participating in various mechanisms that allow repair and restart of replication forks. Specific functions for many of these proteins have been described and an understanding of how they come together in supporting replication forks is starting to emerge. Many questions, however, remain regarding selection of the mechanisms that enable faithful genome duplication and how "normal" intermediates in these mechanisms are sometimes funneled into "rogue" processes that destabilize the genome and lead to cancer, cell death, and emergence of chemotherapeutic resistance. In this review we will discuss molecular mechanisms of DNA damage bypass and replication fork protection and repair. We will specifically focus on the key players that define which mechanism is employed including: PCNA and its control by posttranslational modifications, translesion synthesis DNA polymerases, molecular motors that catalyze reversal of stalled replication forks, proteins that antagonize fork reversal and protect reversed forks from nucleolytic degradation, and the machinery of homologous recombination that helps to reestablish broken forks. We will also discuss risks to genome integrity inherent in each of these mechanisms.


Assuntos
Dano ao DNA/genética , Replicação do DNA/genética , Humanos
16.
J Int Med Res ; 49(4): 3000605211010644, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33900868

RESUMO

Schimke immuno-osseous dysplasia (SIOD) is a rare autosomal recessive inherited disorder that is caused by the SMARCAL1 mutation. The phenotype can vary from mild to severe on the basis of the patient's age at onset. Herein, we report the case of a 14-year-old Chinese boy who presented with short stature, focal segmental glomerulosclerosis (FSGS), and facial dysmorphism. Genetic analysis revealed two compound heterozygous missense mutations, including a well-known mutation (c.1933C>T, p.R645C) and a novel mutation (c.2479G>A, p.V827M) in the SMARCAL1 gene, which were inherited from his parents. In silico analyses showed that the c.2479G>A (p.V827M) variant affects a highly conserved residue within the ATPase catalytic domain. Finally, we established the diagnosis of mild SIOD and treated the patient with diuretics and angiotensin receptor blockers. This report expands the mutational spectrum of SMARCAL1 and reinforces the importance of a detailed clinical evaluation, molecular detection, and appropriate genetic counseling.


Assuntos
Arteriosclerose , DNA Helicases , Síndromes de Imunodeficiência , Síndrome Nefrótica , Osteocondrodisplasias , Adolescente , DNA Helicases/genética , Humanos , Síndromes de Imunodeficiência/genética , Masculino , Mutação , Síndrome Nefrótica/diagnóstico , Síndrome Nefrótica/genética , Osteocondrodisplasias/diagnóstico por imagem , Osteocondrodisplasias/genética , Sequenciamento do Exoma
17.
Mol Cell Oncol ; 7(6): 1801089, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33241105

RESUMO

We recently identified E3 ligase RFWD3 as a modulator of stalled fork stability in BRCA2-deficient cells. We also show that BRCA1 might function upstream of BRCA2 during fork repair and that blocking fork degradation by depleting MRE11 does not guarantee fork repair. These findings provide new insights into the workings of BRCA1 and BRCA2 in the stalled fork repair pathway.

18.
IUBMB Life ; 72(10): 2080-2096, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32754981

RESUMO

The ATP-dependent chromatin remodeling proteins play an important role in DNA repair. The energy released by ATP hydrolysis is used for myriad functions ranging from nucleosome repositioning and nucleosome eviction to histone variant exchange. In addition, the distant member of the family, SMARCAL1, uses the energy to reanneal stalled replication forks in response to DNA damage. Biophysical studies have shown that this protein has the unique ability to recognize and bind specifically to DNA structures possessing double-strand to single-strand transition regions. Mutations in SMARCAL1 have been linked to Schimke immuno-osseous dysplasia, an autosomal recessive disorder that exhibits variable penetrance and expressivity. It has long been hypothesized that the variable expressivity and pleiotropic phenotypes observed in the patients might be due to the ability of SMARCAL1 to co-regulate the expression of a subset of genes within the genome. Recently, the role of SMARCAL1 in regulating transcription has been delineated. In this review, we discuss the biophysical and functional properties of the protein that help it to transcriptionally co-regulate DNA damage response as well as to bind to the stalled replication fork and stabilize it, thus ensuring genomic stability. We also discuss the role of SMARCAL1 in cancer and the possibility of using this protein as a chemotherapeutic target.


Assuntos
DNA Helicases/fisiologia , Replicação do DNA , Motivos de Aminoácidos , Animais , Arteriosclerose/genética , Bovinos , DNA Helicases/química , DNA Helicases/genética , DNA Helicases/metabolismo , Reparo do DNA/fisiologia , Instabilidade Genômica , Histonas/genética , Histonas/metabolismo , Humanos , Mutação , Neoplasias/genética , Síndrome Nefrótica/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Osteocondrodisplasias/genética , Doenças da Imunodeficiência Primária/genética , Embolia Pulmonar/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional
19.
J Cell Sci ; 133(4)2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-31974116

RESUMO

Elevated replication stress is evident at telomeres of about 10-15% of cancer cells, which maintain their telomeres via a homologous recombination (HR)-based mechanism, referred to as alternative lengthening of telomeres (ALT). How ALT cells resolve replication stress to support their growth remains incompletely characterized. Here, we report that CSB (also known as ERCC6) promotes recruitment of HR repair proteins (MRN, BRCA1, BLM and RPA32) and POLD3 to ALT telomeres, a process that requires the ATPase activity of CSB and is controlled by ATM- and CDK2-dependent phosphorylation. Loss of CSB stimulates telomeric recruitment of MUS81 and SLX4, components of the structure-specific MUS81-EME1-SLX1-SLX4 (MUS-SLX) endonuclease complex, suggesting that CSB restricts MUS-SLX-mediated processing of stalled forks at ALT telomeres. Loss of CSB coupled with depletion of SMARCAL1, a chromatin remodeler implicated in catalyzing regression of stalled forks, synergistically promotes not only telomeric recruitment of MUS81 but also the formation of fragile telomeres, the latter of which is reported to arise from fork stalling. These results altogether suggest that CSB-mediated HR repair and SMARCAL1-mediated fork regression cooperate to prevent stalled forks from being processed into fragile telomeres in ALT cells.


Assuntos
Homeostase do Telômero , Telômero , Reparo do DNA , Endonucleases/metabolismo , Recombinação Homóloga , Telômero/genética , Telômero/metabolismo , Homeostase do Telômero/genética
20.
Indian J Nephrol ; 29(4): 291-294, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31423066

RESUMO

Schimke immuno-osseous dysplasia (SIOD) is a rare inherited disease characterized by steroid resistant nephrotic syndrome, spondyloepiphyseal dysplasia, and T-cell immunodeficiency. Focal segmental glomerulosclerosis (FSGS) is the most frequent renal pathological finding associated with proteinuria in SIOD. In this case report, we describe a 4.5-year-old boy who presented with nephrotic syndrome and ventricular septal defect followed by tremor in the limbs after-cerebral infarction. It is emphasized that SIOD should be considered in children with wide range of presentation, from growth retardation, steroid resistant nephrotic syndrome, and bone, cardiac, and neurological abnormalities in the late childhood or even adolescence.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA