Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.784
Filtrar
1.
Methods Mol Biol ; 2857: 79-87, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39348056

RESUMO

Rheumatoid arthritis (RA) is linked to various signs of advanced aging, such as premature immunosenescence which occurs due to decline in regenerative ability of T cells. RA T cells develop a unique aggressive inflammatory senescent phenotype with an imbalance of Th17/T regulatory (Treg) cell homeostasis and presence of CD28- T cells. The phenotypic analysis and characterization of T cell subsets become necessary to ascertain if any functional deficiencies exist within with the help of transcription factor (TF) analysis. These subset-specific TFs dictate the functional characteristics of T-cell populations, leading to the production of distinct effector cytokines and functions. Examining the expression, activity, regulation, and genetic sequence of TFs not only aids researchers in determining their importance in disease processes but also aids in immunological monitoring of patients enrolled in clinical trials, particularly in evaluating various T-cell subsets [Th17 (CD3+CD4+IL17+RORγt+) cells and T regulatory (Treg) (CD3+CD4+CD25+CD127-FOXP3+) cells], markers of T-cell aging [aged Th17 cells (CD3+CD4+IL17+RORγt+CD28-), and aged Treg cells (CD3+CD4+CD25+CD127-FOXP3+CD28-)]. In this context, we propose and outline the protocols for assessing the expression of TFs in aged Th17 and Treg cells, highlighting the crucial aspects of this cytometric approach.


Assuntos
Artrite Reumatoide , Imunossenescência , Linfócitos T Reguladores , Fatores de Transcrição , Humanos , Artrite Reumatoide/imunologia , Artrite Reumatoide/metabolismo , Artrite Reumatoide/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Células Th17/imunologia , Células Th17/metabolismo , Citometria de Fluxo/métodos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Biomarcadores
2.
Int Immunopharmacol ; 143(Pt 1): 113223, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39357204

RESUMO

Atherosclerosis (AS) is a chronic inflammatory disease resulting from lipid metabolism disorders and immune imbalances. Dendritic cells (DCs) are key cells that regulate adaptive and adaptive immunity. When DCs engulf excessive amounts lipids, their function is altered, thereby, accelerating the inflammatory process of AS. Cellular lipophagy serves to reduce lipid accumulation and maintain cellular lipid metabolism balance. In this study, we investigated the effectiveness of 2,3,5,4'-tetrahydroxystilbene 2-O-ß-D-glucoside (TSG) in intervening in the promotion of DCs lipid accumulation by ox-LDL, as well as its role in downregulating lipophagy. Our findings indicate that TSG reduces the maturity of DCs and promotes the differentiation of T cells towards Treg, thereby correcting the imbalanced Treg/Th17. These effects of TSG are closely associated with its inhibition of the PI3K-AKT-mTOR signaling pathway. After administering TSG to ApoE-/- mice that were fed a high-fat diet, there was a noticeable decrease in harmful blood lipids found in the serum. Additionally, the imbalanced Treg/Th17 levels in the spleen were restored, and the levels of pro-inflammatory factor IL-6 and IL-17A in the serum decreased, while the level of anti-inflammatory factor IL-10 increased. Furthermore, the arterial DCs showed a decrease in P62 content. Ultimately, these changes resulted in a reduction in plaque area. It is worth noting that the autophagy inhibitor chloroquine significantly altered the effects of TSG on ApoE-/- mice. In conclusion, this study reveals that TSG can alleviate AS. This is partly achieved through the activation of autophagy in DCs. By intervening in the lipophagy of DCs, it is possible to regulate the immune function of these cells, which in turn helps control the inflammation associated with AS. This presents a potential method for intervening in AS.

3.
Int Immunopharmacol ; 143(Pt 1): 113281, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39357207

RESUMO

The neurological deficits following traumatic spinal cord injury are associated with severe patient disability and economic consequences. Currently, an increasing number of studies are focusing on the importance of ferroptosis during acute organ injuries. However, the spatial and temporal distribution patterns of ferroptosis during SCI and the details of its role are largely unknown. In this study, in vivo experiments revealed that microglia are in close proximity to macrophages, the major cell type that undergoes ferroptosis following SCI. Furthermore, we found that ferroptotic macrophages aggravate SCI by inducing the proinflammatory properties of microglia. In vitro studies further revealed ferroptotic macrophages increased the expression of IL-1ß, IL-6, and IL-23 in microglia. Mechanistically, due to the activation of the NF-κB signaling pathway, the expression of IL-1ß and IL-6 was increased. In addition, we established that increased levels of oxidative phosphorylation cause mitochondrial reactive oxygen species generation and unfolded protein response activation and trigger an inflammatory response marked by an increase in IL-23 production. Our findings identified that targeting ferroptosis and IL-23 could be an effective strategy for promoting neurological recovery after SCI.

4.
Trends Pharmacol Sci ; 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39358175

RESUMO

Development of protective immune responses relies on a balance between proinflammatory CD4 T helper (Th) cell populations such as Th17 cells and regulatory CD4 T cells (Tregs) that keep immune activation in check. Evidence that interleukin-2-inducible T cell kinase (Itk) regulates this balance supports therapeutic applications for Itk inhibition.

5.
Front Genet ; 15: 1437566, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39359478

RESUMO

Abnormal gene dosage from copy number variants has been associated with susceptibility to autoimmune disease. This includes 18p deletion syndrome, a chromosomal disorder with an estimated prevalence of 1 in 50,000 characterized by intellectual disability, facial dysmorphology, and brain abnormalities. The underlying causes for autoimmune manifestations associated with 18p deletions, however, remain unknown. Our objective was to investigate a distinctive case involving monozygotic triplets concordant for developmental delay, white matter abnormalities, and autoimmunity, specifically juvenile-onset Graves' thyroiditis. By chromosomal microarray analysis and whole genome sequencing, we found the triplets to carry a de novo interstitial 5.9 Mb deletion of chromosome 18p11.31p11.21 spanning 19 protein-coding genes. We conducted a literature review to pinpoint genes affected by the deletion that could be associated with immune dysregulation and identified PTPRM as a potential candidate. Through dephosphorylation, PTPRM serves as a negative regulator of STAT3, a key factor in the generation of Th17 cells and the onset of specific autoimmune manifestations. We hypothesized that PTPRM hemizygosity results in increased STAT3 activation. We therefore performed assays investigating PTPRM expression, STAT3 phosphorylation, Th1/Th2/Th17 cell fractions, Treg cells, and overall immunophenotype, and in support of the hypothesis, our investigations showed an increase in cells with phosphorylated STAT3 and higher levels of Th17 cells in the triplets. We propose that PTPRM hemizygosity can serve as a contributing factor to autoimmune susceptibility in 18p deletion syndrome. If confirmed in unrelated 18p/PTPRM deletion patients, this susceptibility could potentially be treated by targeted inhibition of IL-17.

6.
Int Immunopharmacol ; 143(Pt 1): 113263, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39353391

RESUMO

OBJECTIVE: To investigate the effect of SO2 on Th1/Th2/Th17 cells in allergic rhinitis (AR) and the role of JAK1, 2/STAT3 signaling pathways.To Provide potential directions for the treatment of AR. METHODS: Fifteen AR patients were enrolled as the experimental group, while 15 healthy volunteers served as the normal control group. After collecting venous blood, peripheral blood mononuclear cells (PBMCs) were isolated and cultured, followed by the addition of SO2 derivatives and the JAK inhibitor Ruxolitinib. Flow cytometry was employed to assess alterations in the Th1/Th2 and Th17/Treg cell balance upon stimulation with SO2 and Ruxolitinib. qRT-PCR was utilized to detect the expression of Th1-related cytokines IL-2 and IFN-γ, Th2-related cytokines IL-4 and IL-5, Th17-related cytokines IL-17A and RORγt, as well as genes JAK1, JAK2, and STAT3. Flow cytometric cytokine analysis was conducted for quantitative assessment of the expression levels of inflammation-related cytokines in PBMC culture supernatants after stimulation. In addition, we stimulated the Jurkat T lymphocyte cell line with SO2 derivatives, added Ruxolitinib as an inhibitor, and used Western blot analysis to further determine the effects of SO2 on Th cells and the role of the JAK1,2/STAT3 signaling pathway in this process. RESULTS: Stimulation with SO2 derivatives upregulated the expression levels of Th2 cells and associated cytokines, as well as Th1 cells and associated cytokines. both AR patients and healthy individuals displayed increased percentages of Th17 cells and Th17/Treg ratios in PBMCs. The expression of IL-17A, RORγt, and IL-6 was also elevated. Under SO2 stimulation, the expression of JAK1, JAK2, STAT3, and RORγt in Jurkat cells increased. Moreover, after the application of Ruxolitinib, the JAK/STAT signaling pathway was inhibited. This led to a reduction in Th17 cells and IL-17A levels in both AR patients and healthy individuals, as well as a decrease in RORγt expression in Jurkat cells. Additionally, the expression of IL-5 decreased in healthy individuals. CONCLUSION: SO2 exposure exacerbated Th1/Th2/Th17 inflammation in AR patients and induced Th1 and Th17 inflammation in healthy individuals. The stimulatory effect of SO2 on Th17 cell differentiation could be inhibited by Ruxolitinib. This suggests that the Th17 inflammation induced by SO2 stimulation may be related to the activation of the JAK/STAT signaling pathway, and this has been confirmed in the Jurkat cell line.

7.
Biomed Rep ; 21(5): 164, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39268403

RESUMO

Immune cells migrate to hypertrophied adipocytes and release proinflammatory cytokines, leading to adipocyte dysfunction and diabetes. Numerous species of Lespedeza, which are members of the plant family Fabaceae and distributed primarily in temperate Asia and North America, exhibit binding to peroxisome proliferator-activated receptor (PPAR) γ, a target nuclear receptor for treating diabetes. Therefore, the present study aimed to determine which species of Lespedeza plants exert an anti-inflammatory effect in adipose tissue and suppression of blood glucose increase through PPARγ ligand and radical scavenging activity. PPARγ binding and DPPH radical scavenging assays of L. homoloba (LH), L. thunbergii (LT), L. maximowiczii (LM) and L. thunbergii (LT) were performed. LH and LT showed significant ligand activity towards PPARγ and notable radical scavenging activity. LH exhibited a stronger DPPH radical scavenging activity than LT and thus was measured adiponectin secretion from 3T3-L1-derived adipocytes and IL-10 secretion from murine splenocytes. LH increased the adiponectin and the IL-10 secretions. In flow cytometric analysis, BALB/c male mice administered LH exhibited an increase in regulatory T cells (Tregs) and cytotoxic T lymphocyte-associated protein (CTLA)-4+ Tregs as well as a decrease in T helper (Th)17, Th17/Treg ratio and CD8+ and CD4+ T cells in subcutaneous adipose tissue. Conversely, in the spleen, LH decreased Tregs and increased Th17 cells, Th17/Treg ratio and CD4+ and CD8+ T cells. These findings indicated that LH activated immunoreaction in the spleen and Treg cells that migrate to subcutaneous adipose tissue may suppress inflammation. In fasting blood glucose and adiponectin assays, LH-exposed mice exhibited suppression of fasting glucose levels. Therefore, LH may prevent type 2 diabetes by suppressing adipose tissue inflammation.

8.
Front Immunol ; 15: 1431411, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39257580

RESUMO

Introduction: After mild COVID-19 that does not require hospitalization, some individuals develop persistent symptoms that may worsen over time, producing a multisystemic condition termed Post-COVID condition (PCC). Among other disorders, PCC is characterized by persistent changes in the immune system that may not be solved several months after COVID-19 diagnosis. Methods: People with PCC were recruited to determine the distribution and functionality of CD4+ T helper (Th) subsets in comparison with individuals with mild, severe, and critical presentations of acute COVID-19 to evaluate their contribution as risk or protective factors for PCC. Results: People with PCC showed low levels of Th1 cells, similar to individuals with severe and critical COVID-19, although these cells presented a higher capacity to express IFNγ in response to stimulation. Th2/Th1 correlation was negative in individuals with acute forms of COVID-19, but there was no significant Th2/Th1 correlation in people with PCC. Th2 cells from people with PCC presented high capacity to express IL-4 and IL-13, which are related to low ventilation and death associated with COVID-19. Levels of proinflammatory Th9 and Th17 subsets were significantly higher in people with PCC in comparison with acute COVID-19, being Th1/Th9 correlation negative in these individuals, which probably contributed to a more pro-inflammatory than antiviral scenario. Th17 cells from approximately 50% of individuals with PCC had no capacity to express IL-17A and IL-22, similar to individuals with critical COVID-19, which would prevent clearing extracellular pathogens. Th2/Th17 correlation was positive in people with PCC, which in the absence of negative Th1/Th2 correlation could also contribute to the proinflammatory state. Finally, Th22 cells from most individuals with PCC had no capacity to express IL-13 or IL-22, which could increase tendency to reinfections due to impaired epithelial regeneration. Discussion: People with PCC showed skewed polarization of CD4+ Th subsets with altered functionality that was more similar to individuals with severe and critical presentations of acute COVID-19 than to people who fully recovered from mild disease. New strategies aimed at reprogramming the immune response and redirecting CD4+ Th cell polarization may be necessary to reduce the proinflammatory environment characteristic of PCC.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/imunologia , Masculino , Feminino , Pessoa de Meia-Idade , SARS-CoV-2/imunologia , Idoso , Adulto , Células Th1/imunologia , Células Th2/imunologia , Linfócitos T CD4-Positivos/imunologia , Síndrome de COVID-19 Pós-Aguda , Citocinas/metabolismo , Citocinas/imunologia , Células Th17/imunologia , Linfócitos T Auxiliares-Indutores/imunologia
9.
Am J Transl Res ; 16(8): 3990-4000, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39262729

RESUMO

OBJECTIVE: To analyze the correlation of Th17/Treg associated transcription factors (TFs) with clinicopathological features of colorectal cancer (CRC) and their prognostic significance. METHODS: This research enrolled 56 CRC patients (experimental group, EG) and 50 healthy controls (control group, CG), who presented to Deqing People's Hospital between June 2017 and January 2019. The levels of Th17, Treg and their TFs [forkhead box protein P3 (Foxp3), retinoid acid receptor-related orphan receptor gamma t (RORγt)] and secreted inflammatory factors (IFs) [interleukin-17 (IL-17), interleukin-22 (IL-22)] were detected in the peripheral blood (PB) of both groups, and the TFs' phosphorylated protein expression was observed by Western blot. Further, the correlation of TFs with patients' pathological features was analyzed. Finally, a 3-year prognostic follow-up was performed on CRC patients. Receiver operating characteristic (ROC) determined the predictive value of Th17/Treg on the prognostic mortality of patients. RESULTS: Peripheral blood Th17 and Treg showed higher levels in the EG than in the CG, demonstrating excellent diagnostic effects on CRC (P<0.05). The EG also exhibited reduced Foxp3 and p-Foxp3 protein expression, and elevated RORγt and p-RORγt levels compared with the CG (all P<0.0001). In addition, the EG exhibited statistically higher IL-17 and IL-22 levels than the CG (all P<0.05). Further, the analysis of pathological features revealed close correlations of Th17/Treg, RORγt and Foxp3 with tumor size, TNM staging, degree of differentiation, and lymph node metastasis (LNM) of CRC patients (all P<0.001). Finally, the prognostic follow-up results identified that TNM staging, degree of differentiation, LNM, RORγt, Th17 and Treg were independent risk factors for prognostic mortality of CRC patients, while Foxp3 was an independent protective factor (all P<0.001). CONCLUSION: Th17/Treg associated TFs are of great significance for the prognosis evaluation of CRC, the imbalance of which can cause aggravation of the inflammatory reaction and promote malignancy of CRC.

10.
Clin Immunol ; 268: 110357, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39243921

RESUMO

While fatty acid oxidation (FAO) in mitochondria is a primary energy source for quiescent lymphocytes, the impact of promoting FAO in activated lymphocytes undergoing metabolic reprogramming remains unclear. Here, we demonstrate that pemafibrate, a selective PPARα modulator used clinically for the treatment of hypertriglyceridemia, transforms metabolic system of T-cells and alleviates several autoimmune diseases. Pemafibrate suppresses Th17 cells but not Th1 cells, through the inhibition of glutaminolysis and glycolysis initiated by enhanced FAO. In contrast, a conventional PPARα agonist fenofibrate significantly inhibits cell growth by restraining overall metabolisms even at a dose insufficient to induce fatty acid oxidation. Clinically, patients receiving pemafibrate showed a significant decrease of Th17/Treg ratio in peripheral blood. Our results suggest that augmented FAO by pemafibrate-mediated selective activation of PPARα restrains metabolic programs of Th17 cells and could be a viable option for the treatment of autoimmune diseases.

11.
Cell Immunol ; 405-406: 104878, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39312873

RESUMO

Staphylococcus aureus induced Septic arthritis is considered a medical concern. S.aureus binds TLR2 to induce an array of inflammatory responses. Generation of pro-inflammatory cytokines induces T cell responses and control Th17/Treg cell balance. Regulation of T cell-mediated immunity in response to inflammation is significantly influenced by mTOR. Presence of elevated TNF-α, IL-1ß decreases Treg cell activity through STAT3/mTOR, promoting proliferation of T cells towards Th17 cells. Therefore, we postulated, neutralizing TLR2 with either TNF-α or IL-1ß in combination could be useful in modifying Th17/Treg cell ratio in order to treat septic arthritis by suppressing expression of mTOR/STAT3. To date, no studies have reported effects of neutralization of TLR2 along with either TNF-α or IL-1ß on amelioration of arthritis correlating with mTOR/STAT3 expression. Contribution of T lymphocytes collected from blood, spleen, synovial tissues, their derived cytokines IFN-γ, IL-6, IL-17, TGF-ß, IL-10 were noted. Expression of TLR2, TNFR1, TNFR2, NF-κB along with mTOR/STAT3 also recorded. Neutralization of TLR2 along with TNF-α and IL-1ß were able to shift Th17 cells into immunosuppressive Treg cells. Furthermore,elevated expression of IL-10, TNFR2 and demoted expression of mTOR/ STAT3 along with NF-κB in lymphocytes confirms its role in resolution of arthritis. It was also effective in reducing oxidative stress via increasing expression of the antioxidant enzymes. As a result, it can be inferred that Treg-derived IL-10, which may mitigate inflammatory effects of septic arthritis by influencing the mTOR/STAT3 interaction in lymphocytes, may be selected as a different therapeutic strategy for reducing the impact of septic arthritis.

12.
J Agric Food Chem ; 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39315595

RESUMO

Ulcerative colitis (UC) is a common chronic, relapsing inflammatory bowel condition. Procyanidins (PC) are known for their antiangiogenic, anti-inflammatory, antioxidant, and antimetastatic properties. However, there is comparatively limited information on how PC interacts with UC. In this study, 5 mg/10 mL/kg body weight of PC was administered to mice with dextran sulfate sodium (DSS)-induced colitis mice. PC treatment prolonged the survival period of mice, ameliorated UC symptoms, reduced damage to the intestinal mucosal barrier, and increased the protein expression of ZO-1 and occludin in the DSS-treated mice. Importantly, PC treatment significantly reduced gene expression related to Th17 cell differentiation, including STAT3, SMAD3, TGF-ß, and JAK1. The results of the flow cytometry analysis indicated significant increase in the number of Treg cells and a concomitant decrease in the proportion of Th17 cells in the colon following PC treatment. Additionally, PC increased the abundance of gut microbiota such as Bacteroidota, Oscillospiraceae, Muribaculaceae, and Desulfovibrionaceae, as well as the concentrations of acetate acid, propionate acid, and butyrate acid in the feces. PC also activated short-chain fatty acid receptors, such as G-protein coupled receptor 43 in the colon, which promoted the proliferation of Treg cells. The depletion of gut microbiota and subsequent transplantation of fecal microbiota demonstrated that PC's effects on gut microbiota were effective in improving UC and restoring intestinal Th17/Treg homeostasis in a microbiota-dependent manner. This suggests that PC could be a promising functional food for the prevention and treatment of UC in the future.

13.
Immunopharmacol Immunotoxicol ; : 1-8, 2024 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-39307916

RESUMO

Objective: This study aims to explore the effects of Triptolide (TP) on the differentiation of Th17 cells in ankylosing spondylitis (AS).Methods: Peripheral blood mononuclear cells (PBMCs) collected from 10 patients with active AS patients were exposed to TP, GSK-J4 or vehicle. T lymphocyte subsets were analyzed using flow cytometry. ELISA was used to assess the level of IL-17. Western blot analysis and quantitative RT-PCR were used to measure the mRNA and protein levels of RORγt, JMJD3, EZH2, JAK2 and STAT3 in the JAK2/STAT3 signaling pathway.Results: We observed a tendency toward a greater percentage of IL-17-positive CD4+ T cells in peripheral blood mononuclear cells (PBMCs) from patients with active AS than in those from healthy controls. Triptolide (TP) and GSK-J4 significantly reduced IL-17 expression. In cultured PBMCs from patients with active AS, 24 h of treatment with TP or GSK-J4 decreased the expression of RORγt (p < 0.05), JAK2 and STAT3 (JAK2: p < 0.05; STAT3: p < 0.05). Furthermore, both triptolide and GSK-J4 increased the level of histone 3 with Lys 27 trimethylation (H3K27me3) in patient-derived PBMCs. H3K27me3 enrichment was detected at the promoters of the RORc, STAT3 and IL-17 genes. Consistent with this finding, triptolide upregulated the EZH2 gene and downregulated the JMJD3 gene.Conclusion: Triptolide inhibits Th17 cell differentiation via H3K27me3 upregulation and orchestrates changes in histone-modifying enzymes, including JMJD3 and EZH2. These findings support the clinical efficacy of triptolide for AS and may provide clues for identifying molecular targets for the development of novel treatments.

14.
Heliyon ; 10(18): e37866, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39315171

RESUMO

Background: Previous studies have demonstrated that immune cells release exosomes, which act as antigen-presenting vesicles to activate T cells. In our previous study, we discovered that podocytes, a type of kidney cell, can also exhibit antigen-presenting functions to naïve CD4+ T cells in idiopathic nephrotic syndrome (INS). Building upon these findings, the objective of this study was to investigate whether podocytes can regulate the balance between Th17 and Treg cells through the release of exosomes. Methods: We co-cultured naïve CD4+ T cells with LPS-treated bone marrow dendritic cells (LPS-BMDC), LPS-treated mouse podocyte clone 5 (LPS-MPC-5), and exosomes derived from LPS-MPC-5 (LPS-EXO). As a control group, naïve CD4+ T cells were cultured with exosomes from untreated MPC-5 (EXO). After 48 h, we analyzed the percentages of Th17 and Treg cells using flow cytometry, measured the concentrations of IL-17A, IL-10, and IL-4 were using ELISA, and examined the expressions of IL-17a, IL-10, RORC, and FOXP3 using RT-qPCR. Results: We confirmed the presence of exosomes derived from podocytes based on their morphology, size distribution, concentrations, and the levels of exosomes-specific markers. The percentage of Th17 and Treg cells in the LPS-EXO group was significantly higher than that in the control groups, but lower than in the LPS-MPC-5 group. Furthermore, the ratio of Th17/Treg was relatively higher in the LPS-EXO group compared to the LPS-MPC-5 group. Conclusion: This study indicated further insights into the role of exosomes released from LPS-treated podocytes in regulating the balance between Th17 and Treg cells in INS.

15.
Zhongguo Zhong Yao Za Zhi ; 49(15): 4091-4099, 2024 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-39307741

RESUMO

This study investigates the effects of Daphnes Cortex and its processed products on the differentiation of Th17/Treg cells in SD rats with type Ⅱ collagen-induced arthritis(CIA).Sixty-four SD rats were randomly divided into the normal group(normal),model group(model),fried Daphne giraldii Nitsche low-dose and high-dose groups(FDGN-L group, FDGN-H group),raw D. giraldii Nitsche low-dose and high-dose groups(RDGN-L group, RDGN-H group),daphnetin group(DAPH group),and tripterygium glycosides group(GTW group).Except for the normal group, the CIA model was immunized on the seventh day after the first immunization, and was gavaged for 28 days after the second immunization.After sampling, the inflammation of articular synovial membrane in CIA rats was observed by hematoxylin-eosin(HE)staining; the levels of transforming growth factor-ß(TGF-ß),interferon-γ(IFN-γ),interleukin(IL)-2,IL-4,and IL-10 in serum were detected by enzyme-linked immunosorbent assay(ELISA); real-time reverse transcription-PCR(qRT-PCR)and Western blot were used to detect the mRNA and protein expressions of cluster of differentiation(CD) 80(B7-1),CD 86(B7-2),CD28,and cytotoxic T lymphocyte-associated antigen 4(CTLA-4)in the synovial membrane of rats; flow cytometry was used to detect the proportion of Th17 and Treg cells in the synovial membrane of rats.The results showed that compared with the normal group, the joint synovial inflammation of rats in the model group was significantly aggravated, the arthritis index was significantly increased, and the immune organ index was increased(P<0.01).Compared with the model group, each drug administration group could improve the joint inflammation of rats to varying degrees, reduce the arthritis index, inhibit synovial hyperplasia, and reduce the immune organ index; compared with the model group, the serum levels of IL-2 and IFN-γ in each drug administration group were significantly decreased(P<0.01),TGF-ß,IL-4,and IL-10 were significantly increased(P<0.01),the mRNA and protein expressions of B7-1 and CTLA-4 in the synovial membrane were significantly increased(P<0.01),and the proportion of Th17 cells and Treg cells in the joint tissue was significantly decreased(P<0.01).In conclusion, Daphnes Cortex inhibits the expression of Th17 cells in CIA rats and promotes the expression of Treg cells by regulating the B7/CD28/CTLA-4 pathway and the balance of Th17/Treg, thereby treating rheumatoid arthritis.


Assuntos
Artrite Experimental , Antígenos CD28 , Antígeno CTLA-4 , Daphne , Ratos Sprague-Dawley , Animais , Ratos , Artrite Experimental/imunologia , Artrite Experimental/tratamento farmacológico , Masculino , Daphne/química , Antígeno CTLA-4/imunologia , Antígeno CTLA-4/genética , Antígenos CD28/imunologia , Antígenos CD28/genética , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/farmacologia , Células Th17/imunologia , Células Th17/efeitos dos fármacos , Antígeno B7-1/genética , Antígeno B7-1/imunologia , Antígeno B7-1/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Humanos , Transdução de Sinais/efeitos dos fármacos
16.
Biomed Pharmacother ; 179: 117379, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39255739

RESUMO

SCOPE: Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory condition of unknown etiology, although recent evidence suggests that it is caused by an excessive immune response to mucosal antigens. We determined the anti-inflammatory properties of novel compound DJ-X-013 in vitro in lipopolysaccharide (LPS)-induced macrophages and in an in vivo dextran sodium sulfate (DSS)-induced model of colitis. METHODS AND RESULTS: To evaluate the anti-inflammatory properties of DJ-X-013, we used LPS-activated RAW 264.7 macrophages in vitro and a DSS-induced experimental model of colitis in vivo. We examine cellular morphology, and tissue architecture by histology, flow cytometry, RT-qPCR, multiplex, and immunoblot analysis to perform cellular and molecular studies. DJ-X-013 treatment altered cell morphology and expression of inflammatory cytokines in LPS-activated macrophages as compared to cells treated with LPS alone. DJ-X-013 also impeded the migration of RAW 264.7 macrophages by modulating cytoskeletal organization and suppressed the expression of NF-κB and inflammatory markers as compared to LPS alone. DJ-X-013 treatment improved body weight, and colon length and attenuated inflammation in the colon of DSS-induced colitis. Intriguingly, DSS-challenged mice treated with DJ-X-013 induced the numbers of myeloid-derived suppressor cells (MDSCs), dendritic cells (DCs), and natural killer T cells (NKT) in the colon lamina propria (LP) relative to DSS. DJ-X-013 also reduced the influx of neutrophils, TNF-α producing macrophages, restricted the number of Th17 cells, and suppressed inflammatory cytokines and NF-κB in the LP relative to DSS. CONCLUSION: DJ-X-013 is proposed to be a therapeutic strategy for ameliorating inflammation and experimental colitis.


Assuntos
Colite , Sulfato de Dextrana , Inflamação , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Células Supressoras Mieloides , NF-kappa B , Células Th17 , Animais , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/imunologia , Colite/patologia , NF-kappa B/metabolismo , Camundongos , Células RAW 264.7 , Células Th17/efeitos dos fármacos , Células Th17/imunologia , Células Th17/metabolismo , Células Supressoras Mieloides/efeitos dos fármacos , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Inflamação/tratamento farmacológico , Inflamação/patologia , Anti-Inflamatórios/farmacologia , Modelos Animais de Doenças , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/imunologia , Citocinas/metabolismo , Masculino , Colo/efeitos dos fármacos , Colo/patologia , Colo/metabolismo , Colo/imunologia
17.
Biomed Pharmacother ; 179: 117431, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39260323

RESUMO

Skin psoriasis is defined as receiving external stimulation to activate skin dendritic cells (DCs) which can release interleukin 23 (IL-23) to interlink the innate and adaptive immunity as well as induce T helper 17 (Th17) cell differentiation leading to elevated production of interleukin 17 (IL-17) for keratinocytes over production. This autoimmune loop in psoriasis pathogenesis is influenced by G protein-coupled receptor (GPCR) signalling transduction, and in particular, function of adhesion molecule GPR97 in psoriasis endures to be utterly addressed. In this research, our team allocated GPR97 depletion (GPR97-/-), GPR97 conditional depletion on dendritic cell (DC-cKO), and keratin 14-conditional knockout (K14-cKO) mice models to explore the function of GPR97 which influences keratinocytes and skin immunity. It was found that significantly aggravated psoriasis-like lesion in GPR97-/- mice. In addition, hyperproliferative keratinocytes as well as accumulation of DCs and Th17 cells were detected in imiquimod (IMQ)-induced GPR97-/- mice, which was consistent with the results in DC-cKO and K14-cKO psoriasis model. Additional investigations indicated that beclomethasone dipropionate (BDP), an agonist of GPR97, attenuated the psoriasis-like skin disease and restricted HaCaT cells abnormal proliferation as well as Th17 cells differentiation. Particularly, we found that level of NF-κB p65 was increased in GPR97-/- DCs and BDP could inhibit p65 activation in DCs. Role of GPR97 is indispensable and this adhesion receptor may affect immune cell enrichment and function in skin and alter keratinocytes proliferation as well as differentiation in psoriasis.


Assuntos
Imiquimode , Interleucina-17 , Interleucina-23 , Queratinócitos , Camundongos Knockout , Psoríase , Receptores Acoplados a Proteínas G , Transdução de Sinais , Células Th17 , Animais , Psoríase/induzido quimicamente , Psoríase/patologia , Psoríase/genética , Psoríase/metabolismo , Interleucina-17/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/deficiência , Camundongos , Queratinócitos/metabolismo , Queratinócitos/patologia , Células Th17/imunologia , Células Th17/metabolismo , Interleucina-23/metabolismo , Células Dendríticas/metabolismo , Camundongos Endogâmicos C57BL , Humanos , Modelos Animais de Doenças , Pele/patologia , Pele/metabolismo
18.
Gut Microbes ; 16(1): 2397879, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39324491

RESUMO

Fecal microbiota transplantation (FMT) is currently a promising therapy for inflammatory bowel disease (IBD). However, clinical studies have shown that there is an obvious individual difference in the efficacy of FMT. Therefore, it is a pressing issue to identify the factors that influence the efficacy of FMT and find ways to screen the most suitable patients for this therapy. In this work, we targeted the stimulator of interferon genes (STING), a DNA-sensing protein that regulates host-defense. By comparing the differential efficacy of FMT in mice with different expression level of STING, it is revealed that FMT therapy provides treatment for DSS-induced colitis in a STING-dependent manner. Mechanistically, FMT exerts a regulatory effect on the differentiation of intestinal Th17 cells and macrophages, splenic Th1 and Th2 cells, as well as Th1 cells of the mesenteric lymph nodes via STING, down-regulating the colonic M1/M2 and splenic Th1/Th2 cell ratios, thereby improving the imbalanced immune homeostasis in the inflamed intestine. Meanwhile, based on the 16SrDNA sequencing of mice fecal samples, STING was found to facilitate the donor strain colonization in recipients' gut, mainly Lactobacillales, thereby reshaping the gut microbiota disturbed by colitis. Consequently, we proposed that STING, as a key target of FMT therapy, is potentially a biomarker for screening the most suitable individuals for FMT to optimize treatment regimens and enhance clinical benefit.


Assuntos
Colite , Sulfato de Dextrana , Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Proteínas de Membrana , Camundongos Endogâmicos C57BL , Animais , Humanos , Camundongos , Colite/terapia , Colite/induzido quimicamente , Colite/imunologia , Colo/microbiologia , Colo/imunologia , Colo/patologia , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Macrófagos/imunologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Células Th1/imunologia , Células Th17/imunologia , Células Th2/imunologia
19.
Mycopathologia ; 189(5): 85, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39283337

RESUMO

Malassezia, the most abundant fungal commensal on the mammalian skin, has been linked to several inflammatory skin diseases such as atopic dermatitis, seborrheic dermatitis and psoriasis. This study reveals that epicutaneous application with Malassezia globosa (M. globosa) triggers skin inflammation in mice. RNA-sequencing of the resulting mouse lesions indicates activation of Interleukin-17 (IL-17) signaling and T helper 17 (Th17) cells differentiation pathways by M. globosa. Furthermore, our findings demonstrate a significant upregulation of IL-23, IL-23R, IL-17A, and IL-22 expressions, along with an increase in the proportion of Th17 and pathogenic Th17 cells in mouse skin exposed to M. globosa. In vitro experiments illustrate that M. globosa prompts human primary keratinocytes to secrete IL-23 via TLR2/MyD88/NF-κB signaling. This IL-23 secretion by keratinocytes is shown to be adequate for inducing the differentiation of pathogenic Th17 cells in the skin. Overall, these results underscore the significant role of Malassezia in exacerbating skin inflammation by stimulating IL-23 secretion by keratinocytes and promoting the differentiation of pathogenic Th17 cells.


Assuntos
Diferenciação Celular , Interleucina-23 , Queratinócitos , Malassezia , Células Th17 , Malassezia/imunologia , Queratinócitos/microbiologia , Queratinócitos/imunologia , Queratinócitos/metabolismo , Células Th17/imunologia , Animais , Interleucina-23/metabolismo , Humanos , Camundongos , Transdução de Sinais , NF-kappa B/metabolismo , Receptor 2 Toll-Like/metabolismo , Interleucina-17/metabolismo , Pele/microbiologia , Pele/patologia , Pele/imunologia , Modelos Animais de Doenças , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Células Cultivadas , Camundongos Endogâmicos C57BL , Interleucina 22
20.
Dokl Biochem Biophys ; 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39283554

RESUMO

The objective of this work was to study the expression of the TBX21, RORC, GATA3, NFKB1, MAPK8, and STAT3 genes responsible for the regulation of the differentiation of various T-helper subpopulations in individuals chronically exposed to radiation. The object of the study was peripheral blood cells obtained from 120 persons chronically exposed to radiation in a wide range of doses on the Techa River. The mean cumulative absorbed dose to red bone marrow in the examined exposed individuals was 742.7 ± 78.6 mGy (dose range, 73.5-3516.1 mGy); in the comparison group, 17.4 ± 2.2 mGy (dose range, 0.0-55.5 mGy). The subpopulation composition of T-helpers (Th1, Th2, and Th17) was analyzed by flow cytofluorometry. The relative mRNA content of the TBX21, RORC, GATA3, NFKB1, MAPK8, and STAT3 genes was estimated by real-time PCR. The study made it possible to note a decrease in the relative number of T-helpers 2 in the populations of T-helpers of the central memory in the group of chronically exposed persons compared to the comparison group. In the population of T-helpers of the central memory, a statistically significant increase in the relative number of T-helpers 1 was shown, depending on the accumulated absorbed dose to red bone marrow. No changes in mRNA expression of the studied genes were observed. The analysis of the correlation between the expression of GATA3, MAPK8, STAT3, RORC, and TBX21 mRNA and the relative number of cells in subpopulations of T-helper types 1, 2, and 17 in the examined people did not reveal statistically significant patterns.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA