Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 11: 1086964, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36994107

RESUMO

Among the different types of cancer affecting the central nervous system (CNS), glioblastoma (GB) is classified by the World Health Organization (WHO) as the most common and aggressive CNS cancer in adults. GB incidence is more frequent among persons aged 45-55 years old. GB treatments are based on tumor resection, radiation, and chemotherapies. The current development of novel molecular biomarkers (MB) has led to a more accurate prediction of GB progression. Moreover, clinical, epidemiological, and experimental studies have established genetic variants consistently associated with the risk of suffering GB. However, despite the advances in these fields, the survival expectancy of GB patients is still shorter than 2 years. Thus, fundamental processes inducing tumor onset and progression remain to be elucidated. In recent years, mRNA translation has been in the spotlight, as its dysregulation is emerging as a key cause of GB. In particular, the initiation phase of translation is most involved in this process. Among the crucial events, the machinery performing this phase undergoes a reconfiguration under the hypoxic conditions in the tumor microenvironment. In addition, ribosomal proteins (RPs) have been reported to play translation-independent roles in GB development. This review focuses on the research elucidating the tight relationship between translation initiation, the translation machinery, and GB. We also summarize the state-of-the-art drugs targeting the translation machinery to improve patients' survival. Overall, the recent advances in this field are shedding new light on the dark side of translation in GB.

2.
Clin Transl Oncol ; 22(8): 1252-1262, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31865606

RESUMO

PURPOSE: Glioblastoma multiforme (GBM) is the most common and aggressive malignant type of brain tumor. Despite advances in diagnosis and therapy, the prognosis of patients with GBM has remained dismal. Multidrug resistance and high recurrence are two of the major challenges in successfully treating brain tumors. IKBKE (inhibitor of nuclear factor kappa-B kinase subunit epsilon) is a major oncogenic protein in tumors and can inhibit glioblastoma cell proliferation, migration, and tumorigenesis. Our study aimed to investigate the mechanism of IKBKE enhancing the resistance of glioma cells to temozolomide. METHODS: For the in vitro experiments, LN18 and U118 glioblastoma cells were treated with a combination of sh/oe-IKBKE lentivirus and TMZ. Cell proliferation was determined by the EdU assay and colony formation assays. Apoptosis was analyzed by the TUNEL assay. In vivo, LN18 NC and LN18 sh-IKBKE cells were implanted into the cerebrums of nude mice to detect the effect of combination therapy. The protein and mRNA levels were assayed by western blot, immunohistochemistry, and qRT-PCR. RESULTS: In this study, we demonstrated that IKBKE enhances the resistance of glioblastoma cells to temozolomide (TMZ) by activating the AKT/NF-κB signaling pathway to upregulate the expression of the DNA repair enzyme o6-methylguanine-dna methyltransferase (MGMT). In glioblastoma cells, IKBKE knockdown enhances apoptosis and suppresses cell proliferation, clone formation, and tumor development in vivo induced by TMZ. However, overexpression of IKBKE reduces the effects of TMZ. CONCLUSION: Our studies suggest that inhibition of IKBKE can enhance the therapeutic effect of TMZ on GBM in vitro and in vivo, providing new research directions and therapeutic targets for the treatment of GBM.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Metilases de Modificação do DNA/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Resistencia a Medicamentos Antineoplásicos/fisiologia , Glioblastoma/tratamento farmacológico , Quinase I-kappa B/metabolismo , Temozolomida/farmacologia , Proteínas Supressoras de Tumor/metabolismo , Animais , Apoptose/fisiologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Resistência a Múltiplos Medicamentos/fisiologia , Feminino , Técnicas de Silenciamento de Genes , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Quinase I-kappa B/antagonistas & inibidores , Quinase I-kappa B/genética , Quinase I-kappa B/farmacologia , Lentivirus , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , NF-kappa B/metabolismo , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/farmacologia , Transplante de Neoplasias , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/análise , Transdução Genética/métodos , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Autophagy ; 11(7): 1099-113, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25701485

RESUMO

Autophagy and senescence have been described as central features of cell biology, but the interplay between these mechanisms remains obscure. Using a therapeutically relevant model of DNA damage-induced senescence in human glioma cells, we demonstrated that acute treatment with temozolomide induces DNA damage, a transitory activation of PRKAA/AMPK-ULK1 and MAPK14/p38 and the sustained inhibition of AKT-MTOR. This produced a transient induction of autophagy, which was followed by senescence. However, at the single cell level, this coordinated transition was not observed, and autophagy and senescence were triggered in a very heterogeneous manner. Indeed, at a population level, autophagy was highly negatively correlated with senescence markers, while in single cells this correlation did not exist. The inhibition of autophagy triggered apoptosis and decreased senescence, while its activation increased temozolomide-induced senescence, showing that DNA damage-induced autophagy acts by suppressing apoptosis.


Assuntos
Autofagia , Senescência Celular , Dano ao DNA , Análise de Célula Única/métodos , Proteínas Quinases Ativadas por AMP/metabolismo , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Senescência Celular/efeitos dos fármacos , Dacarbazina/análogos & derivados , Dacarbazina/farmacologia , Ativação Enzimática/efeitos dos fármacos , Glioma/enzimologia , Glioma/patologia , Proteínas de Fluorescência Verde/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Modelos Biológicos , Fenótipo , Proteínas Serina-Treonina Quinases/metabolismo , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Temozolomida , Fatores de Tempo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
4.
FEBS Open Bio ; 4: 153-61, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24490140

RESUMO

The Wilms tumor protein 1 (WT1) transcription factor has been associated in malignant melanoma with cell survival and metastasis, thus emerging as a candidate for targeted therapy. A lysine-arginine rich peptide, WT1-pTj, derived from the ZF domain of WT1 was evaluated as an antitumor agent against A2058 human melanoma cells and B16F10-Nex2 syngeneic murine melanoma. Peptide WT1-pTj quickly penetrated human melanoma cells and induced senescence, recognized by increased SA-ß-galactosidase activity, enhanced transcriptional activity of p53, and induction of the cell cycle inhibitors p21 and p27. Moreover, the peptide bound to p53 and competed with WT1 protein for binding to p53. WT1-pTj treatment led to sustained cell growth suppression, abrogation of clonogenicity and G2/M cell cycle arrest. Notably, in vivo studies showed that WT1-pTj inhibited both the metastases and subcutaneous growth of murine melanoma in syngeneic mice, and prolonged the survival of nude mice challenged with human melanoma cells. The 27-amino acid cell-penetrating WT1-derived peptide, depends on C(3) and H(16) for effective antimelanoma activity, inhibits proliferation of WT1-expressing human tumor cell lines, and may have an effective role in the treatment of WT1-expressing malignancies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA