Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Arch Intern Med Res ; 7(2): 73-79, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38737892

RESUMO

Atherosclerosis, a critical contributor to coronary artery diseases, involves the accumulation of cholesterol, fibrin, and lipids within arterial walls, inciting inflammatory reactions culminating in plaque formation. This multifaceted interplay encompasses excessive fibrosis, fatty plaque development, vascular smooth muscle cell (VSMC) proliferation, and leukocyte migration in response to inflammatory pathways. While stable plaques demonstrate resilience against complications, vulnerable ones, with lipid-rich cores, necrosis, and thin fibrous caps, lead to thrombosis, myocardial infarction, stroke, and acute cerebrovascular accidents. The nuanced phenotypes of VSMCs, modulated by gene regulation and environmental cues, remain pivotal. Essential markers like alpha-SMA, myosin heavy chain, and calponin regulate VSMC migration and contraction, exhibiting diminished expression during VSMC de-differentiation and proliferation. p27kip, a CDK inhibitor, shows promise in regulating VSMC proliferation and appears associated with TNF-α-induced pathways impacting unstable plaques. Oncostatin M (OSM), an IL-6 family cytokine, correlates with MMP upregulation and foam cell formation, influencing plaque development. Efforts targeting mammalian target of rapamycin (mTOR) inhibition, notably using rapamycin and its analogs, demonstrate potential but pose challenges due to associated adverse effects. Exploration of the impact of p27kip impact on plaque macrophages presents promising avenues, yet its complete therapeutic potential remains untapped. Similarly, while OSM has exhibited potential in inducing cell cycle arrest via p27kip, direct links necessitate further investigation. This critical review discusses the role of mTOR, p27kip, and OSM in VSMC proliferation and differentiation followed by the therapeutic potential of targeting these mediators in atherosclerosis to attenuate plaque vulnerability.

2.
Vasc Med ; 28(2): 104-112, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36847199

RESUMO

BACKGROUND: Abdominal aortic aneurysms (AAA) are an important cause of cardiovascular deaths. The loss of vascular smooth muscle cells (VSMCs) has been reported to be related to the pathology of AAA. This study focused on investigating the function of circ_0002168 in VSMC apoptosis. METHODS: Levels of genes and proteins were measured by quantitative real-time-polymerase chain reaction (qRT-PCR) and Western blot. The growth of VSMCs was determined by using cell counting kit-8 assay, 5-ethynyl-2'-deoxyuridine (EdU) assay, flow cytometry and the evaluation of caspase-3 activity analysis, reactive oxygen species (ROS) production as well as lactate dehydrogenase (LDH) activity. The binding between miR-545-3p and circ_0002168 or Cytoskeleton-associated protein 4 (CKAP4) was confirmed by bioinformatics analysis, dual-luciferase reporter, RNA immunoprecipitation, and pull-down assays. RESULTS: Circ_0002168 decreased in the aortic tissues of patients with AAA. Functionally, ectopic overexpression of circ_0002168 dramatically induced proliferation and suppressed apoptosis in VSMCs. Mechanistically, circ_0002168 sequestered miR-545-3p to release CKAP4 expression via the ceRNA mechanism, indicating the circ_0002168/miR-545-3p/CKAP4 feedback loop in VSMCs. Increased miR-545-3p and a decreased CKAP4 expression were observed in patients with AAA. Rescue experiments showed that miR-545-3p reversed the protective effects of circ_0002168 on VSMC proliferation. Moreover, inhibition of miR-545-3p could restrain the apoptosis of VSMCs, which was abolished by CKAP4 silencing. CONCLUSION: Circ_0002168 has a protective effect on VSMC proliferation by regulating the miR-545-3p/CKAP4 axis, adding further understanding of the pathogenesis of AAA and a potential therapeutic approach in AAA management.


Assuntos
Aneurisma da Aorta Abdominal , MicroRNAs , Humanos , RNA Circular/genética , Músculo Liso Vascular , Aneurisma da Aorta Abdominal/genética , Apoptose , MicroRNAs/genética , Proliferação de Células , Proteínas de Membrana
3.
Artigo em Inglês | MEDLINE | ID: mdl-35300074

RESUMO

Background: Basic fibroblast growth factor (bFGF)-mediated vascular smooth muscle cell (VSMC) proliferation and migration play an important role in vascular injury-induced neointima formation and subsequent vascular restenosis, a major event that hinders the long-term success of angioplasty. The function of ß3-adrenergic receptors (ß3-ARs) in vascular injury-induced neointima formation has not yet been defined. Objectives: Our current study explored the possible role of ß3-ARs in vascular injury-induced neointima formation by testing its effects on bFGF-induced VSMC migration and proliferation. Methods: ß3-AR expression in rat carotid arteries was examined at 14 days following a balloon catheter-induced injury. The effects of ß3-AR activation on bFGF-induced rat aortic smooth muscle cell proliferation, migration, and signaling transduction (including extracellular-signal-regulated kinase/mitogen activated protein kinase, ERK/MAPK and Protein kinase B, AKT) were tested. Results: We found that vascular injury induced upregulation of ß3-ARs in neointima. Pretreatment of VSMCs with a selective ß3-AR agonist, CL316,243 significantly potentiated bFGF-induced cell migration and proliferation, and ERK and AKT phosphorylation. Our results also revealed that suppressing phosphorylation of ERK and AKT blocked bFGF-induced cell migration and that inhibiting AKT phosphorylation reduced bFGF-mediated cell proliferation. Conclusion: Our results suggest that activation of ß3-ARs potentiates bFGF-mediated effects on VSMCs by enhancing bFGF-mediated ERK and AKT phosphorylation and that ß3-ARs may play a role in vascular injury-induced neointima formation.

4.
Am J Physiol Heart Circ Physiol ; 321(3): H496-H508, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34270373

RESUMO

Angiotensin II (ANG II) plays an important role in the regulation of various physiological functions including proliferation, hypertrophy of vascular smooth muscle cells (VSMCs) through the overexpression of Giα proteins. Sirtuin 1 (Sirt1), a class III histone deacetylase and epigenetic regulator is implicated in a wide range of cellular functions, including migration and growth of VSMCs and in ANG II-induced hypertension. The present study was undertaken to examine the role of Sirt1 in ANG II-induced overexpression of Giα proteins and hyperproliferation of aortic VSMCs. We show that ANG II treatment of VSMCs increased the expression of Sirt1, which was attenuated by AT1 and AT2 receptor antagonists, losartan, and PD123319, respectively. In addition, the knockdown of Sirt1 by siRNA attenuated ANG II-induced overexpression of Giα-2 and Giα-3 proteins, hyperproliferation of VSMCs and the overexpression of cell cycle proteins, cyclin D1, Cdk4, and phosphorylated retinoblastoma proteins. Furthermore, ANG II-induced increased levels of superoxide anion (O2-) and NADPH oxidase activity and increased phosphorylation of ERK1/2 and Akt that are implicated in enhanced expression of Giα proteins and hyperproliferation of VSMCs were also attenuated to control levels by silencing of Sirt1. In addition, depletion of Sirt1 by siRNA also attenuated ANG II-induced enhanced phosphorylation of platelet-derived growth factor receptor (PDGFR), epidermal growth factor receptor (EGFR), and insulin-like growth factor receptor (IGFR) in VSMCs. In summary, our results demonstrate that ANG II increased the expression of Sirt1, which through oxidative stress, growth factor receptor-mediated mitogen-activated protein (MAP) kinase/Akt signaling pathway enhances the expression of Giα proteins and cell cycle proteins and results in the hyperproliferation of VSMCs.NEW & NOTEWORTHY ANG II regulates various physiological functions including proliferation of VSMCs through the overexpression of Giα proteins. Sirt1, a class III histone deacetylase, is implicated in several cellular functions, including VSMC growth and ANG II-induced hypertension. We showed for the first time that ANG II increased the expression of Sirt1, which through oxidative stress, growth factor receptor-mediated MAP kinase/Akt signaling pathway enhances the levels of Giα and cell cycle proteins resulting in the hyperproliferation of VSMCs.


Assuntos
Angiotensina II/farmacologia , Proliferação de Células , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/metabolismo , Sirtuína 1/genética , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Animais , Aorta/citologia , Células Cultivadas , Ciclina D1/genética , Ciclina D1/metabolismo , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Humanos , Imidazóis/farmacologia , Losartan/farmacologia , Masculino , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/fisiologia , Piridinas/farmacologia , Ratos , Ratos Sprague-Dawley , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Receptores do Fator de Crescimento Derivado de Plaquetas/genética , Receptores do Fator de Crescimento Derivado de Plaquetas/metabolismo , Sirtuína 1/metabolismo
5.
Prostaglandins Other Lipid Mediat ; 156: 106583, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34332056

RESUMO

15-Deoxy-Δ-12,14-prostaglandin J2 (15d-PGJ2) is an endogenous agonist of the ligand dependent transcriptional factor, peroxisome proliferator-activated receptor -gamma (PPAR-γ). Although PPAR-γ mediates some actions of 15d-PGJ2, many actions of 15d-PGJ2 are independent of PPAR-γ. The PPAR-γ signaling pathway has beneficial effects on tumor progression, inflammation, oxidative stress, and angiogenesis in numerous studies. In this review, various studies were analyzed to understand the effects of 15d-PGJ2 in vascular smooth muscle cells (VSMC)s. 15d-PGJ2 inhibits proliferation of VSMCs during vascular remodeling and it alters the expression of contractile proteins and inflammatory components within these cells as well. However, the effects of 15d-PGJ2 as well as its ability to induce PPAR-γ activation remains controversial as contradictory effects of this prostaglandin in VSMCs exist. Understanding the mechanisms by which 15d-PGJ2 elicit beneficial actions whether by PPAR-γ activation or independently, will aid in developing new therapeutic strategies for diseases such as hypertension with an inflammatory component. Although great advances are being made, more research is needed to reach definitive conclusions.


Assuntos
Prostaglandina D2/análogos & derivados
6.
Clin Chim Acta ; 520: 8-15, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34022243

RESUMO

Atherosclerosis (AS), a chronic arterial disease, is characterized by endothelial dysfunction, inflammatory reactions and lipid accumulation in parallel with aberrant angiogenesis and vascular smooth muscle cell (VSMC) proliferation. Adipose tissue has been suggested to have an integral influence on metabolism and endocrine secretion, while there have been increasing concerns about the possible involvement of adipokines in cardiovascular diseases, including AS. Here, we focused on chemerin, an adipokine highly expressed in adipose tissue, with strong evidence of an association with inflammation, endothelial dysfunction, metabolic disorder, aberrant angiogenesis, VSMC proliferation and calcification. In this review, we discuss chemerin and its receptors in the pathogenesis of AS. However, the existing data assign various, even contradictory, roles to chemerin in atherosclerosis, such as inhibiting vascular calcification and impairing endothelial function. Current studies focusing on its anti- and pro-atherogenic effects have pinpointed its distinct role in specific cell types and contexts in the pathogenesis of atherosclerosis. Therefore, the gaps in current knowledge regarding the specific role played by chemerin in the etiology of AS require additional future studies. It seems reasonable to suggest that targeted chemerin therapy can be developed as an innovative approach for treating AS.


Assuntos
Aterosclerose , Quimiocinas , Adipocinas , Tecido Adiposo , Humanos , Inflamação
7.
Cardiovasc Drugs Ther ; 35(4): 769-773, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33891248

RESUMO

PURPOSE: Ang II regulates RhoGDI1 stability and cell proliferation via SUMOylation. However, how Ang II regulates RhoGDI1 SUMOylation remains unknown. In this study, we focused on revealing the effects of E1 subunits (Aos1 and Uba2) on RhoGDI1 SUMOylation in HA-VSMC proliferation. METHODS: The expressions of Aos1, Uba2, and SUMO1 were suppressed by siRNA transfection. HA-VSMCs were treated with Ang II (100 nM) for 24 h. RhoGDI1 SUMOylation and ubiquitination were checked by co-immunoprecipitation. Cell proliferation was detected by EdU assay. RESULTS: Uba2 or Aos1 suppression significantly inhibited Ang II-induced SUMO2/3 modification of RhoGDI1 and cell proliferation, while not affecting SUMO1 modification of RhoGDI1. In addition, Uba2 or Aos1 suppression promoted RhoGDI1 ubiquitination and degradation. These indicate that both Uba2 and Aos1 are necessary for SUMO2/3 modification of RhoGDI1 that participates in cell proliferation by regulating RhoGDI1 ubiquitination and stability. Moreover, SUMO1 suppression did not affect RhoGDI1 ubiquitination and degradation and cell proliferation in Ang II-induced VSMCs, suggesting that SUMO1 modification does not participate in RhoGDI1 stability and cell proliferation. CONCLUSION: This study reveals the differences between SUMO2/3 and SUMO1 modification in regulating RhoGDI1 stability and Ang II-mediated cell proliferation. Schematic summary of roles of SUMO1 and SUMO2/3 modification of RhoGDI1 in regulating RhoGDI1 stability and cell proliferation in Ang II-treated HA-VSMCs.


Assuntos
Músculo Liso Vascular/fisiologia , Proteína SUMO-1/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Enzimas Ativadoras de Ubiquitina/metabolismo , Ubiquitinas/metabolismo , Inibidor alfa de Dissociação do Nucleotídeo Guanina rho/metabolismo , Angiotensina II/metabolismo , Proliferação de Células/fisiologia , Humanos , Contração Muscular/fisiologia , Receptor Tipo 1 de Angiotensina/metabolismo , Receptor Tipo 2 de Angiotensina/metabolismo , Sumoilação , Ubiquitinação
8.
Can J Physiol Pharmacol ; 99(5): 536-548, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32893666

RESUMO

Transmembrane protein 98 (TMEM98) is a novel gene, and its function has not been well investigated. In a prior study, we have shown that siRNA-mediated knockdown of TMEM98 inhibited interleukin-8 (IL-8) promoted endothelial cell (EC) adhesion, as well as vascular smooth muscle cell (VSMC) proliferation and migration in the vascular endothelial and smooth muscle cell dysfunction. Herein, we used gain- and loss-of-function approaches combined with biochemical techniques to further explore the role of TMEM98 in the vascular wall cell. The expression and secretion of TMEM98 was increased in cultured human umbilical vein endothelial cells (HUVECs) and VSMCs treated with IL-8 and platelet-derived growth factor-BB (PDGF-BB). Also, PDGF-BB secretion was increased in TMEM98-treated HUVECs and VSMCs. Thus, it appears that TMEM98 and PDGF-BB form a positive feedback loop in potentiation of EC adhesion, as well as VSMC proliferation and migration. Knockdown of TMEM98 mediated by siRNA inhibited PDGF-BB-promoted EC adhesion by downregulating the expression of ICAM-1 and VCAM-1, as well as impaired the proliferation and migration of VSMCs by suppressing the AKT/GSK3ß/cyclin D1 signaling pathway and reducing the expression of ß-catenin. Hence, TMEM98 promoted EC adhesion by inducing the expression of ICAM-1/VCAM-1 and triggered VSMC proliferation and migration by activating the ERK and AKT/GSK3ß signaling pathways. Taken together, TMEM98 may serve as a potential therapeutic target for the clinical treatment of vascular endothelial and smooth muscle cell dysfunction.


Assuntos
Movimento Celular , Músculo Liso Vascular , Becaplermina , Proliferação de Células , Células Endoteliais , Humanos , Miócitos de Músculo Liso
9.
Toxicol Appl Pharmacol ; 383: 114747, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31499192

RESUMO

Abnormal proliferation of vascular smooth muscle cells (VSMCs) is a hallmark of vascular restenosis. We investigated whether polypyrimidine tract-binding protein 1 (PTBP1), a novel regulator of cell proliferation and differentiation, is implicated in VSMC proliferation and neointima hyperplasia responding to injury. C57BL/6 J mice of 10-12 weeks old were randomly divided into sham and carotid artery injury group. Primary VSMCs obtained from thoracic aortas of 10- to 12-week-old mice were treated with physiological saline and platelet derived growth factor-BB (PDGF-BB). Adenovirus expressing shCon, shPTBP1 or shYY2 were transfected into the injured common carotid artery or VSMCs. qRT-PCR and immunoblotting were used to determine the mRNA and protein expression levels, respectively. Immunohistochemical staining of H&E and Ki-67 were used to evaluate restenosis of vessels. Cell counting kit-8 assay and Ki-67 immunofluorescent staining were utilized to evaluate the rate of VSMC proliferation. The expression of PTBP1 were upregulated both in injured arteries and in PDGF-BB-treated VSMCs. PTBP1 inhibition significantly attenuated neointima hyperplasia and Ki-67 positive area induced by injury. Knockdown of PTBP1 in vitro also suppressed VSMC proliferation after PDGF-BB treatment. The effects of PTBP1 inhibition mentioned above were all abolished by knockdown of YY2. Finally, we identified four cell cycle regulators (p53, p21, Cdkn1c, Cdkn2b) that were regulated by PTBP1/YY2 axis both in vitro and in vivo. These findings demonstrated that PTBP1 is a critical regulator of VSMC proliferation and neointima hyperplasia via modulating the expression of YY2.


Assuntos
Proliferação de Células/fisiologia , Ribonucleoproteínas Nucleares Heterogêneas/fisiologia , Hiperplasia/metabolismo , Músculo Liso Vascular/metabolismo , Neointima/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/fisiologia , Fatores de Transcrição/biossíntese , Animais , Becaplermina/farmacologia , Proliferação de Células/efeitos dos fármacos , Ribonucleoproteínas Nucleares Heterogêneas/antagonistas & inibidores , Hiperplasia/patologia , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/patologia , Neointima/patologia , Proteína de Ligação a Regiões Ricas em Polipirimidinas/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
10.
Biochem Biophys Rep ; 18: 100640, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31032431

RESUMO

Incretin therapy has emerged as one of the most popular medications for type 2 diabetes. We have previously reported that the dipeptidyl peptidase-4 (DPP-4) inhibitor linagliptin attenuates neointima formation after vascular injury in non-diabetic mice. In the present study, we examined whether combined treatment with linagliptin and the sodium glucose cotransporter 2 (SGLT2) inhibitor empagliflozin attenuates neointima formation in diabetic mice after vascular injury. Diabetic db/db mice were treated with 3 mg/kg/day linagliptin and/or 30 mg/kg/day empagliflozin from 5 to 10 weeks of age. Body weight was significantly decreased by empagliflozin and the combined treatment. Blood glucose levels and glucose tolerance test results were significantly improved by empagliflozin and the combined treatment, but not by linagliptin. An insulin tolerance test suggested that linagliptin and empagliflozin did not improve insulin sensitivity. In a model of guidewire-induced femoral artery injury in diabetic mice, neointima formation was significantly decreased in mice subjected to combined treatment. In an in vitro assay using rat aortic smooth muscle cells (RASMC), 100, 500, or 1000 nM empagliflozin significantly decreased the RASMC number in a dose-dependent manner. A further significant reduction in RASMC proliferation was observed after combined treatment with 10 nM linagliptin and 100 nM empagliflozin. These data suggest that combined treatment with the DPP-4 inhibitor linagliptin and SGLT2 inhibitor empagliflozin attenuates neointima formation after vascular injury in diabetic mice in vivo and smooth muscle cell proliferation in vitro.

11.
Chem Pharm Bull (Tokyo) ; 67(1): 41-46, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30606949

RESUMO

Bio-guided fractionation of the 70% ethanol extract of Belamcanda chinensis (L.) DC. revealed four new compounds, including 6″-O-acetylembinin (5), 3″-O-acetylembinin (6), irigenin 3'-O-ß-glucopyranoside (8), and 2'-acetyl-1,3-O-diferuloylsucrose (9), along with five known compounds (1-4, 7). Their chemical structures were determined using extensive NMR data, mass spectroscopy, and comparison with published literature. Among the isolates, compounds 1 and 4-7 achieved good regulation of the growth and proliferation of vascular smooth muscle cells.


Assuntos
Iridaceae/química , Isoflavonas/farmacologia , Músculo Liso Vascular/citologia , Músculo Liso Vascular/efeitos dos fármacos , Componentes Aéreos da Planta/química , Extratos Vegetais/farmacologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Isoflavonas/química , Isoflavonas/isolamento & purificação , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Relação Estrutura-Atividade
12.
J Atheroscler Thromb ; 26(2): 183-197, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29962378

RESUMO

AIMS: Recently, incretin therapy has attracted increasing attention because of its potential use in tissue-protective therapy. Neuron-derived orphan receptor 1 (NOR1) is a nuclear orphan receptor that regulates vascular smooth muscle cell (VSMC) proliferation. In the present study, we investigated the vascular-protective effect of Exendin-4 (Ex-4), a glucagon-like peptide-1 receptor agonist, by inhibiting NOR1 expression in VSMCs. METHODS: We classified 7-week-old male 129X1/SvJ mice into control group and Ex-4 low- and high-dose-treated groups fed normal or high-fat diets, respectively. Endothelial denudation injuries were induced in the femoral artery at 8 weeks of age, followed by the evaluation of neointima formation at 12 weeks of age. To evaluate VSMC proliferation, bromodeoxyuridine incorporation assay and cell cycle distribution analysis were performed. NOR1 and cell cycle regulators were detected using immunohistochemistry, western blotting, quantitative reverse-transcription polymerase chain reaction, and luciferase assays. RESULTS: Ex-4 treatment reduced vascular injury-induced neointima formation compared with controls. In terms of VSMCs occupying the neointima area, VSMC numbers and NOR1-expressing proliferative cells were significantly decreased by Ex-4 in a dose-dependent manner in both diabetic and non-diabetic mice. In vitro experiments using primary cultured VSMCs revealed that Ex-4 attenuated NOR1 expression by reducing extracellular signal-regulated kinase-mitogen-activated protein kinase and cAMP-responsive element-binding protein phosphorylations. Furthermore, in the cell cycle distribution analysis, serum-induced G1-S phase entry was significantly attenuated by Ex-4 treatment of VSMCs by inhibiting the induction of S-phase kinase-associated protein 2. CONCLUSION: Ex-4 attenuates neointima formation after vascular injury and VSMC proliferation possibly by inhibiting NOR1 expression.


Assuntos
Proteínas de Ligação a DNA/antagonistas & inibidores , Exenatida/farmacologia , Peptídeo 1 Semelhante ao Glucagon/agonistas , Hipoglicemiantes/farmacologia , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Neointima/tratamento farmacológico , Proteínas do Tecido Nervoso/antagonistas & inibidores , Receptores de Esteroides/antagonistas & inibidores , Receptores dos Hormônios Tireóideos/antagonistas & inibidores , Animais , Células Cultivadas , Masculino , Camundongos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Neointima/metabolismo , Neointima/patologia
13.
Oncotarget ; 8(50): 88043-88058, 2017 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-29152140

RESUMO

Transmembrane protein 98 (TMEM98), known as a novel gene related to lung cancer, hepatocellular carcinoma, differentiation of T helper 1 cells and normal eye development, has no defined role reported in terms of atherosclerosis (AS). To investigate the potential involvement of TMEM98 during AS processes, its obvious secretion and expression has been initially characterized in hyperlipidemia patients' serum and AS mice's serum respectively. We then explored the possible role of TMEM98 in the pathogenesis of AS in vitro. IL-8, a pro-atherogenesis cytokine, was used to induce the expression of TMEM98 in both endothelial cells (ECs) and vascular smooth muscle cells (VSMCs). Collectively, TMEM98 expression significantly increased in ECs and VSMCs, both induced by IL-8. Additionally, the adhesion ability of monocytes to ECs as well as the proliferation and migration of VSMCs were all decreased after siRNA-TMEM98 treatment. Furthermore, siRNA-TMEM98 dramatically inhibited the expression of ICAM-1 in ECs and the expression of p-AKT, p-GSK3ß and Cyclin D1 from VSMCs, and AKT agonist partially restored the proliferation and migration of VSMC after siRNA-TMEM98 treatment. Taken together, siRNA-TMEM98 inhibits IL-8 mediated EC adhesion by down-regulating the expression of ICAM-1. Additionally, it also hinders the proliferation and migration of VSMCs through suppressing the AKT/GSK3ß/Cyclin D1 signaling pathway. Our study provides sufficient evidence to support that TMEM98 could be a novel gene associated with AS for the first time.

14.
J Mol Med (Berl) ; 95(3): 335-348, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28004124

RESUMO

Restenosis after angioplasty is a serious clinical problem that can result in re-occlusion of the coronary artery. Although current drug-eluting stents have proved to be more effective in reducing restenosis, they have drawbacks of inhibiting reendothelialization to promote thrombosis. New treatment options are in urgent need. We have shown that netrin-1, an axon-guiding protein, promotes angiogenesis and cardioprotection via production of nitric oxide (NO). The present study examined whether and how netrin-1 attenuates neointimal formation in a femoral wire injury model. Infusion of netrin-1 into C57BL/6 mice markedly attenuated neointimal formation following wire injury of femoral arteries, measured by intimal to media ratio (from 1.94 ± 0.55 to 0.45 ± 0.86 at 4 weeks). Proliferation of VSMC in situ was largely reduced. This protective effect was absent in DCC+/- animals. NO production was increased by netrin-1 in both intact and injured femoral arteries, indicating netrin-1 stimulation of endogenous NO production from intact endothelium and remaining endothelial cells post-injury. VSMC migration was abrogated by netrin-1 via a NO/cGMP/p38 MAPK pathway, while timely EPC homing was induced. Injection of netrin-1 preconditioned wild-type EPCs, but not EPCs of DCC+/- animals, substantially attenuated neointimal formation. EPC proliferation, NO production, and resistance to oxidative stress induced apoptosis were augmented by netrin-1 treatment. In conclusion, our data for the first time demonstrate that netrin-1 is highly effective in reducing neointimal formation following vascular endothelial injury, which is dependent on DCC, and attributed to inhibition of VSMC proliferation and migration, as well as improved EPC function. These data may support usage of netrin-1 and netrin-1 preconditioned EPCs as novel therapies for post angioplasty restenosis. KEY MESSAGE: Netrin-1 attenuates neointimal formation following post endothelial injury via DCC and NO. Netrin-1 inhibits VSMC proliferation in situ following endothelial injury. Netrin-1 inhibits VSMC migration via a NO/cGMP/p38 MAPK pathway. Netrin-1 augments proliferation of endothelial progenitor cells (EPCs) and EPC eNOS/NO activation. Netrin-1 enhances resistance of EPCs to oxidative stress, improving re-endothelialization following injury.


Assuntos
Células Progenitoras Endoteliais/efeitos dos fármacos , Neointima/tratamento farmacológico , Netrina-1/uso terapêutico , Óxido Nítrico/metabolismo , Substâncias Protetoras/uso terapêutico , Animais , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Receptor DCC/metabolismo , Células Progenitoras Endoteliais/metabolismo , Células Progenitoras Endoteliais/patologia , Humanos , Masculino , Camundongos Endogâmicos C57BL , Neointima/metabolismo , Neointima/patologia , Ratos , Transdução de Sinais/efeitos dos fármacos
15.
Can J Physiol Pharmacol ; 94(1): 49-58, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26524499

RESUMO

Vascular smooth muscle cells (VSMC) from spontaneously hypertensive rats (SHR) exhibit hyperproliferation, enhanced MAP kinase (MAPK) activity, and overexpression of Giα proteins. This study was undertaken to examine whether the overexpression of Giα proteins contributes to the hyperproliferation of VSMC of SHR through MAPK signaling. The hyperproliferation of VSMC from SHR in the absence and presence of angiotensin II was restored towards those in Wistar-Kyoto (WKY) rats levels by pertussis toxin (PT) treatment. In addition, siRNA knockdown of Giα proteins also resulted in the attenuation of hyperproliferation towards control levels. The overexpression of Giα proteins was also inhibited by MAPK and PI3 kinase (PI3K) inhibitors. In addition, the hyperproliferation and enhanced phosphorylation of ERK1/2 and Akt in VSMC from SHR were attenuated towards WKY levels by the inhibitors of MAPK, PI3K, c-Src, and antioxidants, whereas PT was unable to attenuate the enhanced phosphorylation of ERK1/2 and Akt. Furthermore, 8Br-cAMP and forskolin also attenuated the hyperproliferation of VSMC from SHR. These results suggest that the hyperproliferation of VSMC from SHR may be attributed to the enhanced expression of Giα proteins and increased activation of MAPK and PI3 kinase. However, Giα-mediated hyperproliferation may not be mediated through MAPK- and PI3 kinase-dependent pathways and may involve decreased levels of intracellular cAMP.


Assuntos
Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Hipertensão/metabolismo , Hipertensão/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , DNA/biossíntese , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/antagonistas & inibidores , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Técnicas de Silenciamento de Genes , Sistema de Sinalização das MAP Quinases , Estresse Oxidativo , Toxina Pertussis/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Transdução de Sinais
16.
Iran Biomed J ; 19(2): 117-23, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25864817

RESUMO

UNLABELLED: Hyperlipidemia and oxidized-low-density lipoproteins (Ox-LDL) are important independent cardiovascular risk factors that have been shown to stimulate vascular smooth muscle cell (VSMC) proliferation. The purpose of the present study was to investigate the effect of vitamin E on Ox-LDL, lipid profile, C-reactive protein (CRP), and VSMC proliferation of rat aorta. METHODS: Male Wistar rats (n = 32) were divided into four groups namely: sham (SH), control (C), non-treated diabetic, and vitamin E-treated diabetic (VETD) groups. Ox-LDL, lipid profile, CRP and VSMC proliferation of aorta were measured after 42 days. RESULTS: The results revealed that along with a significant increase in VSMC proliferation, the amount of CRP, Ox-LDL, and lipid profiles in diabetic rats. VSMC proliferation was significantly ameliorated, and elevated CRP, Ox-LDL, and lipid profiles were also restored to those of shams in VETD. CONCLUSIONS: These findings strongly support the idea that diabetes induces Ox-LDL-mediated oxidative stress and VSMC proliferation in aorta of rat and imply that vitamin E has a strong protective effect as an antioxidant.


Assuntos
Aorta/patologia , Diabetes Mellitus/patologia , Hiperlipidemias/sangue , Lipoproteínas LDL/sangue , Músculo Liso Vascular/fisiologia , Animais , Antioxidantes/uso terapêutico , Proteína C-Reativa/metabolismo , Doenças Cardiovasculares/prevenção & controle , Proliferação de Células , Lipídeos/sangue , Lipoproteínas LDL/metabolismo , Masculino , Músculo Liso Vascular/citologia , Estresse Oxidativo , Ratos , Ratos Wistar , Vitamina E/uso terapêutico
17.
Int J Cardiol ; 175(3): 515-21, 2014 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-25017905

RESUMO

BACKGROUND: Retinoic acid-related orphan receptor α (RORα) has been implicated in the progression of atherosclerosis, but its role in the proliferation of vascular smooth muscle cells (vSMCs) has not been fully examined. We previously reported that RORα activates AMP-activated protein kinase (AMPK), which is associated with the suppression of vSMC proliferation. Therefore, we investigated the suppressive function of RORα on the proliferation of vSMCs and the molecular mechanisms involved. RESULTS: First, RORα and its activator, cholesterol sulfate (CS), induced the activation of AMPK in both human aortic SMCs and rat A7r5 cells, which was accompanied by the suppression of mammalian target of rapamycin (mTOR) and p70 ribosomal protein S6 kinase 1. Second, RORα and CS modulated the expression of cell-cycle-regulating factors, such as p53, p27, and cyclin D in vSMCs. Consistent with this, the overexpression of RORα or CS treatment suppressed the proliferation of human aortic SMCs and rat A7r5 cells, possibly through G1 arrest. RORα and CS also inhibited the migration of A7r5 cells in two-dimensional and three-dimensional cell migration assays. Finally, we demonstrated that the infusion of adenovirus encoding RORα into arteries suppressed neointima formation after balloon injury in rats. CONCLUSION: These results demonstrate that RORα inhibits vSMC proliferation through AMPK-induced mTOR suppression, and suggest that RORα is a therapeutic target for the cardiovascular diseases associated with vSMC proliferation.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Proliferação de Células/fisiologia , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/administração & dosagem , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Ativação Enzimática/fisiologia , Humanos , Masculino , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
18.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-298646

RESUMO

This study examined the relationship between PDGF-induced proliferation of vascular smooth muscle cells (VSMCs) and Nur77 expression and the effect of atorvastatin on VSMC proliferation and Nur77 in PDGF-treated VSMCs.Rat VSMCs were isolated and cultured.After incubation with atorvastatin or Nur77 siRNA,the cells were stimulated with PDGF and detected for BrdU incorporation to measure the proliferation of the VSMCs.Quantitative PCR and Western blotting were used to determine the Nur77 protein and the CREB phosphorylation level,to observe their relations with PDGF-induced VSMC proliferation.Our results showed that PDGF increased the BrdU incorporation in VSMCs,suggesting that it induced the proliferation of the cells.The VSMC proliferation was associated with increased Nur77 expression and elevated CREB phosphorylation.Atorvastatin inhibited the PDGF-induced VSMC proliferation,suppressed Nur77 expression.After silencing of Nur77 gene,the PDGF-induced VSMC proliferation was decreased.It was concluded that PDGF-induced VSMC proliferation was related to the Nur77 expression and CREB phosphorylation.Atorvastatin reduced the Nur77 expression and,at the same time,inhibited the VSMC proliferation.

19.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-727611

RESUMO

The cellular mechanisms that contribute to the acceleration of atherosclerosis in diabetes are poorly understood. Therefore, the potential mechanisms involved in the diabetes-dependent increase in vascular smooth muscle cell (VSMC) proliferation was investigated. Using primary culture of VSMC from streptozotocin-induced diabetic rat aorta, cell proliferation assay showed two-fold increase in cell number accompanied with enhanced superoxide generation compared to normal VSMC, 2 days after plating. Both the increased superoxide production and cell proliferation in diabetic VSMC were significantly attenuated by not only tiron (1 mM), a superoxide scavenger, but also by diphenyleneiodonium (DPI; 10micrometer), an NAD (P) H oxidase inhibitor. NAD (P) H oxidase activity in diabetic VSMC was significantly higher than that in control cell, accompanied with increased mRNA expression of p22phox, a membrane subunit of oxidase. Furthermore, inhibition of p22phox expression by transfection of antisense p22phox oligonucleotides into diabetic VSMC resulted in a decrease in superoxide production, which was accompanied by a significant inhibition of cell proliferation. Based on these results, it is suggested that diabetes-associated increase in NAD (P) H oxidase activity via enhanced expression of p22phox contributes to augmented VSMC proliferation in diabetic rats.


Assuntos
Animais , Ratos , Sal Dissódico do Ácido 1,2-Di-Hidroxibenzeno-3,5 Dissulfônico , Aceleração , Aorta , Aterosclerose , Contagem de Células , Proliferação de Células , Membranas , Músculo Liso Vascular , NAD , Oligonucleotídeos , Oxirredutases , RNA Mensageiro , Superóxidos , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA