RESUMO
Environmental protection has gained greater importance over time due to the negative impact and irreversible consequences that have occurred worldwide and stem from pollution. One of the great challenges faced in different parts of the world is the inadequate management and classification of solid waste. In order to contribute to tackling this issue, this paper proposes an automated sorting system based on artificial vision which allows recognition and separation of recyclable materials (Plastic, Glass, Cardboard and Metal) through a webcam connected in real time to the Nvidia® Jetson Nano™ 2 GB programming board, which has a convolutional neural network (CNN) trained for the proper classification of waste. The system had a 95 % accuracy in separating plastic, 96 % in glass and metal, and 94 % in cardboard. With this in mind, we conclude it contributes to the recycling effort, which has an impact on the reduction of environmental pollution worldwide.
RESUMO
This work aims at proposing an affordable, non-wearable system to detect falls of people in need of care. The proposal uses artificial vision based on deep learning techniques implemented on a Raspberry Pi4 4GB RAM with a High-Definition IR-CUT camera. The CNN architecture classifies detected people into five classes: fallen, crouching, sitting, standing, and lying down. When a fall is detected, the system sends an alert notification to mobile devices through the Telegram instant messaging platform. The system was evaluated considering real daily indoor activities under different conditions: outfit, lightning, and distance from camera. Results show a good trade-off between performance and cost of the system. Obtained performance metrics are: precision of 96.4%, specificity of 96.6%, accuracy of 94.8%, and sensitivity of 93.1%. Regarding privacy concerns, even though this system uses a camera, the video is not recorded or monitored by anyone, and pictures are only sent in case of fall detection. This work can contribute to reducing the fatal consequences of falls in people in need of care by providing them with prompt attention. Such a low-cost solution would be desirable, particularly in developing countries with limited or no medical alert systems and few resources.
Assuntos
Acidentes por Quedas , Humanos , Acidentes por Quedas/prevenção & controle , Aprendizado Profundo , Computadores , AlgoritmosRESUMO
This paper presents a semi-automated, scalable, and homologous methodology towards IoT implemented in Python for extracting and integrating images in pedestrian and motorcyclist areas on the road for constructing a multiclass object classifier. It consists of two stages. The first stage deals with creating a non-debugged data set by acquiring images related to the semantic context previously mentioned, using an embedded device connected 24/7 via Wi-Fi to a free and public CCTV service in Medellin, Colombia. Through artificial vision techniques, and automatically performs a comparative chronological analysis to download the images observed by 80 cameras that report data asynchronously. The second stage proposes two algorithms focused on debugging the previously obtained data set. The first one facilitates the user in labeling the data set not debugged through Regions of Interest (ROI) and hotkeys. It decomposes the information in the nth image of the data set in the same dictionary to store it in a binary Pickle file. The second one is nothing more than an observer of the classification performed by the user through the first algorithm to allow the user to verify if the information contained in the Pickle file built is correct.
RESUMO
The use of technological tools, in the food industry, has allowed a quick and reliable identification and measurement of the sensory characteristics of food matrices is of great importance, since they emulate the functioning of the five senses (smell, taste, sight, touch, and hearing). Therefore, industry and academia have been conducting research focused on developing and using these instruments which is evidenced in various studies that have been reported in the scientific literature. In this review, several of these technological tools are documented, such as the e-nose, e-tongue, colorimeter, artificial vision systems, and instruments that allow texture measurement (texture analyzer, electromyography, others). These allow us to carry out processes of analysis, review, and evaluation of food to determine essential characteristics such as quality, composition, maturity, authenticity, and origin. The determination of these characteristics allows the standardization of food matrices, achieving the improvement of existing foods and encouraging the development of new products that satisfy the sensory experiences of the consumer, driving growth in the food sector. However, the tools discussed have some limitations such as acquisition cost, calibration and maintenance cost, and in some cases, they are designed to work with a specific food matrix.
Assuntos
Alimentos , Paladar , Olfato , Nariz Eletrônico , LínguaRESUMO
RESEARCH QUESTION: Is it possible to explore an association between individual sperm kinematics evaluated in real time and spermatozoa selected by an embryologist for intracytoplasmic sperm injection (ICSI), with subsequent normal fertilization and blastocyst formation using a novel artificial vision-based software (SiD V1.0; IVF 2.0, UK)? DESIGN: ICSI procedures were randomly video recorded and subjected to analysis using SiD V1.0, proprietary software developed by our group. In total, 383 individual spermatozoa were retrospectively analysed from a dataset of 78 ICSI-assisted reproductive technology cycles. SiD software computes the progressive motility parameters, straight-line velocity (VSL) and linearity of the curvilinear path (LIN), of each sperm trajectory, along with a quantitative value, head movement pattern (HMP), which is an indicator of the characteristics of the sperm head movement patterns. The mean VSL, LIN and HMP measurements for each set of spermatozoa were compared based on different outcome measures. RESULTS: Statistically significant differences were found in VSL, LIN and HMP among those spermatozoa selected for injection (P < 0.001). Additionally, LIN and HMP were found to be significantly different between successful and unsuccessful fertilization (Pâ¯=â¯0.038 and Pâ¯=â¯0.029, respectively). Additionally, significantly higher SiD scores were found for those spermatozoa that achieved both successful fertilization (Pâ¯=â¯0.004) and blastocyst formation (Pâ¯=â¯0.013). CONCLUSION: The possibility of carrying out real-time analyses of individual spermatozoa using an automatic tool such as SiD creates the opportunity to assist the embryologist in selecting the better spermatozoon for injection in an ICSI procedure.
Assuntos
Fertilização in vitro , Sêmen , Blastocisto , Fertilização , Fertilização in vitro/métodos , Humanos , Masculino , Estudos Retrospectivos , Software , EspermatozoidesRESUMO
This article presents a methodology to recycle and upgrade a 4-DOF educational robot manipulator with a gripper. The robot is upgraded by providing it an artificial vision that allows obtaining the position and shape of objects collected by it. A low-cost and open-source hardware solution is also proposed to achieve motion control of the robot through a decentralized control scheme. The robot joints are actuated through five direct current motors coupled to optical encoders. Each encoder signal is fed to a proportional integral derivative controller with anti-windup that employs the motor velocity provided by a state observer. The motion controller works with only two open-architecture Arduino Mega boards, which carry out data acquisition of the optical encoder signals. MATLAB-Simulink is used to implement the controller as well as a friendly graphical interface, which allows the user to interact with the manipulator. The communication between the Arduino boards and MATLAB-Simulink is performed in real-time utilizing the Arduino IO Toolbox. Through the proposed controller, the robot follows a trajectory to collect a desired object, avoiding its collision with other objects. This fact is verified through a set of experiments presented in the paper.
RESUMO
A pesquisa visou avaliar a metodologia do projeto Tree Vis para determinar a nutrição de ferro, boro, zinco e cobre em plantas de milho submetidas a doses desses nutrientes. Foram utilizados tratamentos constituídos pela omissão, 1/5, 2/5 e a dose completa dos elementos com quatro repetições em cada fase de coleta, sendo essas V4, V7 e R1. Os experimentos foram realizados em casa de vegetação, em cultivo hidropônico, conduzidos em vasos com solução nutritiva. Foi determinada a produção de massa seca da parte aérea e do sistema radicular, além da determinação dos teores dos nutrientes nas folhas indicativas dos estádios fenológicos de cada época de coleta. Em cada estádio foram coletadas imagens das folhas indicativas e novas através de um scanner para as análises de visão artificial. As doses crescentes dos nutrientes promoveram maior produção de massa seca na parte aérea e nas raízes e reduziram a produção quando utilizada a dose máxima do nutriente. O sistema de visão artificial mostrou-se promissor na identificação de deficiência de ferro com 77,5% de acerto, boro com 81,7% de acerto, zinco com 81,0% e cobre com 57,2 % de acerto, tendo identificado as com boa confiabilidade
The research aimed to evaluate the methodology of the Pr oject Tree Vis for determining nutrition iron, boron, zinc and copper in maize plants subjected to doses of these nutrients. Treatments used were made by omission, 1/5, 2/5 and the full dose of the elements with four replicates at each stage of collection, these are V4, V7 and R1. The experiments ware conducted in a greenhouse in hydroponics, conducted in pots with nutrient solution. Was determined the dry mass production of the aerial part and roots, besides the determ ination of nutritional content in the leaves indicative of phenological stages of each harvest time. At each stage were collected images of indicative and new leaves through with a scanner for the analyzes of artificial vision. The increasing doses of nutr ients promoted higher dry mass production in the aerial part and roots and reduced the production when using the highest dose of the nutrient. The artificial vision system showed promise in identifying of deficiency of iron with 77.5% accuracy, of boron with 81.7% of correct, of zinc with 81.0% accuracy and copper with 57.2% accuracy, with a good reliability in the identifi
Assuntos
Boro/isolamento & purificação , Cobre/isolamento & purificação , Ferro/isolamento & purificação , Zea mays/química , Zinco/isolamento & purificação , Fenômenos Fisiológicos VegetaisRESUMO
In this study, a camera to infrared diode (IRED) distance estimation problem was analyzed. The main objective was to define an alternative to measures depth only using the information extracted from pixel grey levels of the IRED image to estimate the distance between the camera and the IRED. In this paper, the standard deviation of the pixel grey level in the region of interest containing the IRED image is proposed as an empirical parameter to define a model for estimating camera to emitter distance. This model includes the camera exposure time, IRED radiant intensity and the distance between the camera and the IRED. An expression for the standard deviation model related to these magnitudes was also derived and calibrated using different images taken under different conditions. From this analysis, we determined the optimum parameters to ensure the best accuracy provided by this alternative. Once the model calibration had been carried out, a differential method to estimate the distance between the camera and the IRED was defined and applied, considering that the camera was aligned with the IRED. The results indicate that this method represents a useful alternative for determining the depth information.