Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 814
Filtrar
1.
Environ Res ; : 120119, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39389200

RESUMO

The capability of different vegetable species to accumulate Pentachloronitrobenzene (PCNB) and cadmium (Cd) in soils varies significantly. Investigating these characteristics can guide the rational use of farmland contaminated with PCNB and Cd. The growth of five common vegetables (three vegetable species and three varieties of one species) in PCNB and Cd co-contaminated soils in Southwest China was investigated through a 100-day simulated contamination pot experiment. Interspecific and intervariety differences in the uptake and accumulation of PCNB and Cd were also examined. These vegetables included leafy types such as Lactuca sativa (CL), Lactuca sativa var. longifolia (RL), and Brassica rapa subsp. chinensis (BC), and root types such as Red Raphanus sativus (RR) and Lactuca sativa var. angustata (AL). Results showed that light to medium PCNB contamination (0.44 to 6.74 mg·kg-1) promoted the growth of leafy vegetables, while severe contamination (9.88 to 9.96 mg·kg-1) inhibited their growth. Root vegetables were inhibited by PCNB. Soil Cd contamination reduced the biomass of all five vegetables. In co-contamination soil (PCNB: 0.47 to 9.88 mg·kg-1; Cd: 0.46 to 1.63 mg·kg-1), vegetable growth was affected by the interaction between PCNB and Cd. In severely PCNB-contaminated soil, PCNB contents of CL, RL, BC, and AL leaves exceeded food safety limits, while those in RR and AL stems did not. The five vegetables showed varying Cd contamination, with AL leaves being the most contaminated, exceeding the standard by 60 times. PCNB accumulation followed the order: AL leaves > BC > AL stems > RL> CL> RR. Cd accumulation was highest in AL leaves, followed by stems, RR, BC, CL, and lowest in RL, with significant differences (P<0.05). Co-contaminated soil did not promote PCNB and Cd uptake in vegetables. CL and RL, with low PCNB and Cd accumulation capacities, could be considered low-accumulation varieties for lightly contaminated soils.

2.
Ann Bot ; 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39340339

RESUMO

BACKGROUND AND AIMS: Thallium (Tl) is extremely toxic to all lifeforms and an emerging pollutant. Plants in the Brassicaceae family, including edible crops, have an enhanced capacity for Tl accumulation, even from soils with low thallium concentration. The most extreme Tl hyperaccumulator is Biscutella laevigata, capable of attaining >32,000 µg Tl g-1 DW in its leaves. METHODS: Biscutella laevigata from a non-metallicolous accession (Feltre, Italy) and a metallicolous accession (Les Malines, France) were subjected to a dosing experiment in hydroponics (0, 5, 30 µM Tl), followed by synchrotron-based µXRF analysis to elucidate tissue and cellular-level Tl distribution. KEY RESULTS: Flow cytometric data on the two used accessions showed the Feltre accession has a genome size twice of that of the Les Malines accession (256 and 125 pg/2C respectively), suggesting they are phylogenetically distant populations. The Feltre accession does not accumulate Tl (125 µg Tl g-1 DW on average in leaves) at the 5 µM Tl dose level, whereas the Les Malines accession had a mean of 1750 µg Tl g-1 DW, with peaks of 24,130 µg Tl g-1 DW at the 30 µM Tl dose level. At 30 µM Tl the non-metallicolous accession did not grow, and at 5 µM Tl showed reduced biomasss compared to the metallicolous one. In Les Malines accession, the synchrotron-based µXRF analysis revealed that Tl is localised in the vacuoles of epidermal cells, especially underneath trichomes and in trichome basal cells. Thallium also occurs in solid crystalline deposits (3-5 µm in size, ~40 wt% Tl) that are mainly found in foliar margins and under trichome bases. CONCLUSIONS: Biscutella laevigata is an attractive model for studying Tl hypertolerance and hyperaccumulation on account of the extreme expression of this trait, and its marked intraspecific variability.

3.
Environ Pollut ; 362: 124959, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39278554

RESUMO

Microplastics (MPs) pose a significant threat to marine ecosystems, necessitating robust biomonitoring to assess aquatic risks and inform effective policymaking. In this study we investigated MPs pollution in gammarus (Pontogammarus maeoticus), shrimp (Palaemon elegans), sediment and water samples of southern coast of the Caspian Sea to assess the potential use of these two crustaceans as biomonitors of MPs pollution, bioconcentration of MPs in organisms' tissue and the pollution risks of MPs in environmental matrices. Samples were collected from 6 stations during June to August 2023. MPs were found in all compartments with an average of 100 ± 45.34 items/kg dry weight, 0.45 ± 0.06 items/L, 0.38 ± 0.21 items/individual or 0.58 ± 0.34 items/g wet weight (ww) and 0.26 ± 0.15 items/individual or 8.69 ± 7.88 items/g ww, for sediments, seawaters, P. elegans and P. maeoticus, respectively. MPs were prevailed by class 300-1000 µm in size, polyamide in polymer, fiber in shape and black in color. P. maeoticus and P. elegans did not meet the selection criteria as MPs biomonitors. However, bioconcentration factor (BCF) illustrated that both crustaceans can absorb and accumulate MPs from their surrounding water (BCF >1). Based on contamination factors (CF) values, sampling stations were polluted with MPs (1 ≤ CF < 6). The overall pollution load index (PLI) for sediment and seawater stations were 2.47 and 1.88, respectively, indicating minor contamination with MPs in the risk level I. Current research provides useful information on MPs pollution in crustaceans species and the risk level of MPs in environmental matrices that can be suitable for bioaccumulation hazard assessment and future monitoring programs.

4.
J Hazard Mater ; 479: 135725, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39243539

RESUMO

In this study, we utilized an innovative quantitative read-across (RA) structure-activity relationship (q-RASAR) approach to predict the bioconcentration factor (BCF) values of a diverse range of organic compounds, based on a dataset of 575 compounds tested using Organisation for Economic Co-operation and Development Test Guideline 305 for bioaccumulation in fish. Initially, we constructed the q-RASAR model using the partial least squares regression method, yielding promising statistical results for the training set (R2 =0.71, Q2LOO=0.68, mean absolute error [MAE]training=0.54). The model was further validated using the test set (Q2F1=0.77, Q2F2=0.75, MAEtest=0.51). Subsequently, we explored the q-RASAR method using other regression-based supervised machine-learning algorithms, demonstrating favourable results for the training and test sets. All models exhibited R2 and Q2F1 values exceeding 0.7, Q2LOO values greater than 0.6, and low MAE values, indicating high model quality and predictive capability for new, unidentified chemical substances. These findings represent the significance of the RASAR method in enhancing predictivity for new unknown chemicals due to the incorporation of similarity functions in the RASAR descriptors, independent of a specific algorithm.


Assuntos
Aprendizado de Máquina , Compostos Orgânicos , Relação Quantitativa Estrutura-Atividade , Compostos Orgânicos/química , Organização para a Cooperação e Desenvolvimento Econômico , Bioacumulação , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Animais , Peixes/metabolismo , Algoritmos
5.
Ecotoxicol Environ Saf ; 285: 117079, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39305770

RESUMO

River pollution can harm human health through direct contact, drinking water, and the consumption of contaminated fish and irrigated agricultural products. Surface water and Nile tilapia (Oreochromis niloticus) samples were collected monthly from July 2022 to June 2023 at three sites (El-Rahawy, Sabal, and Tala) along the Rosetta Nile branch in Egypt to monitor the presence of eight trace elements. The potential human health risks from consuming contaminated fish were also assessed. Iron and manganese were consistently detected in all water samples across most seasons and locations, with concentrations generally below the WHO permissible levels. All 72 analyzed fish muscle samples were found to contain trace elements. The mean concentrations of metals in the fish muscle samples, in descending order, were: iron > zinc > copper > manganese > tin > antimony > lead > mercury. Significant spatial and seasonal variations were observed in both water and fish samples. El-Rahawy was identified as the most contaminated site, with summer exhibiting the highest contamination rate compared to other seasons. Fish samples collected from El-Rahawy demonstrated the highest bioconcentration factor (BCF) values for most elements, particularly mercury, lead, iron, manganese, and antimony. Target hazard quotient (THQ) calculations for the trace elements in Nile tilapia muscles revealed that all trace elements, except antimony, had THQ values below 1, suggesting that consuming Nile tilapia from these sites is unlikely to cause adverse health effects. However, THQ values for antimony exceeded the threshold of 1, indicating a potential health risk for consumers. Although the detected trace elements in the fish were below the permissible toxicity limits, some could pose a future threat to human health, necessitating further studies, ongoing monitoring, and preventive measures.

6.
Sci Total Environ ; 952: 175969, 2024 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-39222812

RESUMO

Bisphenols, bisphenol A diglycidyl ether (BADGE), and bisphenol F diglycidyl ether (BFDGE) are commonly used as raw materials or additives in the production of several industrial and consumer products. However, information regarding the occurrence and distribution of these industrial chemicals in freshwater ecosystem is limited. In this study, four bisphenols, six BADGEs, and three BFDGEs were determined in abiotic and biotic samples collected from the Dongjiang River basin in southern China. Among the four bisphenols, BPA was widely present in all samples analyzed including surface water (median: 1.81 ng/L), sediment (3.1 ng/g dw), aquatic plants (3.69 ng/g dw), algae (7.57 ng/g dw), zooplankton (6.17 ng/g dw), and fish muscle (5.28 ng/g dw). Among the nine BADGEs and BFDGEs analyzed, BADGE, BADGE•H2O, BADGE·HCl·H2O and BADGE•2H2O was found in all sample types. Although the median concentration of BADGE•2H2O in surface water was below LOQ, this compound was found at median concentrations of 2.61, 3.59, 1.03, 1.69, and 49.8 ng/g dw in sediment, plants, algae, zooplankton, and fish muscle, respectively. Significant positive linear correlations were found among logarithmic transformed concentrations of BPA, BADGE, BADGE•H2O, BADGE•HCl•H2O, and BADGE•2H2O in sediment. The bioconcentration factor (logBCF) values of BADGE, BADGE•H2O, BADGE•HCl, BADGE•HCl•H2O, BADGE•2H2O, and BADGE•2HCl in fish, plants, algae, and zooplankton were > 3.3 L/kg (wet weight), indicating that these chemicals possess moderate bioaccumulation potential. The estimated daily total intake of bisphenols and BADGEs through fish consumption was 75.1 ng/kg bw/day for urban adult residents. The study provides baseline information on the occurrence of bisphenols, BADGEs, and BFDGEs in a freshwater ecosystem.


Assuntos
Compostos Benzidrílicos , Monitoramento Ambiental , Compostos de Epóxi , Fenóis , Rios , Poluentes Químicos da Água , China , Poluentes Químicos da Água/análise , Compostos Benzidrílicos/análise , Rios/química , Fenóis/análise , Compostos de Epóxi/análise , Humanos , Bioacumulação , Medição de Risco , Animais , Exposição Ambiental/estatística & dados numéricos
7.
Sci Total Environ ; 954: 176398, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39326763

RESUMO

Cacao crops in Colombia play a fundamental role in its economy. Cacao bean exports have a rising tendency due to increased area and production. However, cadmium (Cd) in cacao beans has affected market in Colombia. The aim of this study is to assess Cd distribution hotspots for cacao beans, Cd in beans and soil relationships, geological ages and soil chemical parameters, overall Cd dynamics, soil-to-plant translocation, and EU regulation impacts on Cd presence in Colombian cacao production. A hot and cold spot analysis combined with a cluster and outlier analysis was used to build the geographic Cd distribution in cacao beans in Colombia. Cadmium in the subsurface and the relationship with Cd in the soil surface of cacao farms were analysed using the geoaccumulation index (Igeo). The bioconcentration factor (BCF) and soil chemical features in cacao beans were quantified. Positive correlations were observed within all the studied variables except for Mn and Fe. The highest correlation was observed within Ca, pH, and Cd in soil. The Valanginian-Albian and Albian-Maastrichtian geological ages are directly related to Cd in beans, Zn, P, soil Cd, and Fe. Regions with the highest cacao productivity and export registered an average Cd concentration in beans of 2.39_ ± _2.82 mg kg-1. Two municipalities in Santander were 'partially contaminated' according to Igeo. The BCF was not directly proportional to soil and bean Cd level and did not fully coincide with hot spots. This evidence reinforces the idea that even areas with apparently low Cd levels may register a latent problem associated with genetic/ontogenetic, climatic, or management factors. This first distribution map of Cd in cacao beans constitutes a tool to implement actions to minimize risks and face challenges posed by the imposed regulations that may limit raw cacao bean exports in Colombia.

8.
Environ Sci Pollut Res Int ; 31(45): 56550-56564, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39271616

RESUMO

Triclosan (TCS), an emerging pollutant, is a notable contributor to adverse impacts on aquatic organisms due to its widespread use during COVID-19 and hydrophobic properties. There is extensive documented literature on TCS toxicity in commercially important fish species; however, studies on aquatic plants remain limited. In this prelude, the present study aims to evaluate the effect of TCS on Lemna minor, a commercially important aquatic plant species for 7 days. The results showed dose-dependent significant alterations in growth, pigments and stress enzymes of L. minor at varied concentrations of TCS (1 to 8 mg L-1). Median inhibitory concentration (IC50) was found to be 4.813 mg L-1. Total chlorophyll and carotenoid levels decreased 73.11 and 81.83%, respectively after 7 days of TCS exposure. A significant increase in catalase and superoxide dismutase activity was observed in TCS exposed groups as compared to the control. Bioconcentration factor was found to be in the range of 5.855 to 37.129 signifying TCS ability to accumulate and transfer through the food chain. Scanning electron microscopy (SEM) analysis showed deformation in the cell surface and alteration of stroma morphology of TCS exposed groups. Furthermore, the Fourier transform infrared spectroscopy (FTIR) study also revealed that higher concentrations of TCS could cause alteration in the functional groups in the plant. This study demonstrates that TCS negatively impacts the growth and metabolism of primary producers, offering crucial insights into its interactions with aquatic plants and establishing baseline information essential for crafting effective mitigation strategies for TCS contamination in aquatic environments.


Assuntos
Araceae , Estresse Oxidativo , Triclosan , Poluentes Químicos da Água , Triclosan/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Araceae/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Ecotoxicologia , Clorofila/metabolismo
9.
Ecotoxicol Environ Saf ; 284: 116992, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39244882

RESUMO

Indole-3-acetic acid (IAA) can regulate plant growth and thus modulate the accumulation of polycyclic aromatic hydrocarbons (PAHs). However, the effect of endogenous IAA on PAHs accumulation and its influencing factors remains unclear. To unravel this, two different IAA expression genotypes of Arabidopsis thaliana, i.e., IAA-underproducing yucca1D [YUC1] mutant and wild type [WT]) were selected and treated with different fluoranthene (Flu) concentrations (0 mg/L [CK], 5 mg/L [Flu5], and 20 mg/L [Flu20]) to reveal the impact mechanism of endogenous IAA on Flu uptake by plants. The results indicated that under Flu5 treatment, the bioconcentration factors (BCF) and translocation factors (TF) of Flu in WT were 41.4 % and 14.3 % higher than those in YUC1. Similarly, under Flu20 treatment, the BCF and TF of Flu in WT were also 42.2 % and 8.2 % higher than those in YUC1. In addition, the BCF and TF were 72.5 % and 35.8 % higher under Flu5 treatment compared to Flu20 treatment for WT, and 73.4 % and 28.6 % higher respectively for YUC1. Moreover, WT exhibited higher plant growth (biomass, root morphology indicators [root length, root area and number of tips]) and IAA content compared to YUC1 under identical Flu treatments. Plant growth and IAA content declined with the increase of Flu concentration in both YUC1 and WT leaves compared with CK treatment. Conversely, in WT roots, root biomass and morphology indicators promoted followed by a decrease as the concentration of Flu increased. Additionally, the antioxidant enzyme activities (SOD, POD, and CAT) of WT were 11.1 %, 16.7 %, and 28.9 % higher than those of YUC1 under Flu5 treatment, and 13.6 %, 12.9 %, and 26.5 % higher under Flu20 treatment. Compared with CK treatment, SOD and POD activities promoted with increasing Flu concentration, whereas CAT activities decreased. Variability separation analysis revealed that level of IAA primarily influenced Flu accumulation in WT or under Flu5 treatments, whereas antioxidant enzyme activity primarily affected Flu accumulation in YUC1 or under Flu20 treatments. Exploring the relationship between the IAA synthesis gene YUCCA and IAA levels, alongside Flu accumulation, could yield novel insights into the regulation of PAH accumulation in plants.


Assuntos
Arabidopsis , Fluorenos , Ácidos Indolacéticos , Arabidopsis/efeitos dos fármacos , Fluorenos/toxicidade , Ácidos Indolacéticos/metabolismo , Antioxidantes/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos
10.
Chemosphere ; 365: 143333, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39271078

RESUMO

The chronic toxicity of short chain perfluoroalkyl sulfonic acids (PFSAs), such as perfluorobutanesulfonic acid (PFBS) and perfluorohexanesulfonic acid (PFHxS), are relatively understudied despite the increasing detection of these compounds in the environment. We investigated the chronic toxicity and bioconcentration of PFBS and PFHxS using northern leopard frog (Rana [Lithobates] pipiens) tadpoles. We exposed Gosner stage (GS) 25 tadpoles to either PFBS or PFHxS at nominal concentrations of 0.1, 1, 10, 100, and 1000 µg/L until metamorphosis (GS42). We then assessed tadpole growth, development, stress, and immune metrics, and measured fatty acid (FA) composition and PFSA concentrations in liver and whole-body tissues. Tadpole growth and development measures were relatively unaffected by PFSA exposure. However, tadpoles exposed to 1000 µg/L PFBS or PFHxS had significantly increased hepatosomatic indexes (HSI) relative to controls. Further, tadpoles from the 1000 µg/L PFHxS treatment had altered FA profiles relative to controls, with increased total FAs, saturated FAs, monounsaturated FAs, and omega-6 polyunsaturated FAs. In addition, tadpoles from the 1000 µg/L PFHxS treatment had a higher probability of waterborne corticosterone detection. These results suggest that PFBS and PFHxS influence the hepatic health of tadpoles, and that PFHxS may alter lipid metabolism in tadpoles. We also observed a higher probability of tadpoles being phenotypically female after exposure to an environmentally relevant concentration (0.1 µg/L) of PFHxS, suggesting that PFHxS may exert endocrine disrupting effects on tadpoles during early development. The measured bioconcentration factors (BCFs) for both compounds were ≤10 L kg-1 wet weight, suggesting low bioconcentration potential for PFBS and PFHxS in tadpoles. Many of the significant effects observed in this study occurred at concentrations several orders of magnitude above those measured in the environment; however, our work shows effects of PFSAs exposure on amphibians and provides essential information for ecological risk assessments of these compounds.


Assuntos
Fluorocarbonos , Larva , Rana pipiens , Ácidos Sulfônicos , Poluentes Químicos da Água , Animais , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Fluorocarbonos/toxicidade , Ácidos Sulfônicos/toxicidade , Poluentes Químicos da Água/toxicidade , Rana pipiens/metabolismo , Rana pipiens/fisiologia , Metamorfose Biológica/efeitos dos fármacos , Ácidos Graxos/metabolismo , Fígado/metabolismo , Fígado/efeitos dos fármacos , Caproatos/toxicidade
11.
Front Microbiol ; 15: 1444374, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39220045

RESUMO

The pollution of heavy metals (HMs) is a major environmental concern for agricultural farming communities due to water scarcity, which forces farmers to use wastewater for irrigation purposes in Pakistan. Vegetables grown around the cities are irrigated with domestic and industrial wastewater from areas near mining, paint, and ceramic industries that pollute edible parts of crops with various HMs. Cadmium (Cd) is an extremely toxic metal in arable soil that enters the food chain and damages the native biota, ultimately causing a reduction in plant growth and development. However, the use of microbes and growth regulators enhances plant growth and development as well as HM immobilization into the cell wall and hinders their entry into the food chain. Thus, the integrated use of bacterial consortium along with exogenously applied jasmonic acid (JA) mitigates the adverse effect of metal stress, ultimately reducing the metal mobility into roots by soil. Therefore, the current study was conducted to check the impact of Cd-tolerant bacteria and JA on the growth, nutrient status, and uptake of Cd in the cauliflower (Brassica oleracea). Our results demonstrated that increasing concentrations of Cd negatively affect growth, physiological, and biochemical attributes, while the use of a bacterial consortium (SS7 + SS8) with JA (40 µmol L-1) significantly improved chlorophyll contents, stem fresh and dry biomass (19.7, 12.7, and 17.3%), root length and root fresh and dry weights (28.8, 15.2, and 23.0%), and curd fresh and dry weights and curd diameter (18.7, 12.6, and 15.1%). However, the maximum reduction in soil Cd, roots, and curd uptake was observed by 8, 11, and 9.3%, respectively, under integrated treatment as compared to the control. Moreover, integrating bacterial consortium and JA improves superoxide dismutase (SOD) (16.79%), peroxidase dismutase (POD) (26.96%), peroxidase (POX) (26.13%), and catalase (CAT) (26.86%). The plant nitrogen, phosphorus, and potassium contents were significantly increased in soil, roots, and curd up to 8, 11, and 9.3%, respectively. Hence, a consortium of Klebsiella strains in combination with JA is a potential phytostabilizer and it reduces the uptake of Cd from soil to roots to alleviate the adverse impact on cauliflower's growth and productivity.

12.
Plants (Basel) ; 13(18)2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39339525

RESUMO

The disposal of coal fly ash (CFA) generated from coal-fired power stations has serious impact on the ecosystem, by converting large pieces of land to barren ash dams with the potential to contaminate groundwater, surface water, air and soil. The aim of this study was to clarify the potential of phytoremediation using Helichrysum splendidum (Thunb.) Less. in areas polluted by CFA through conduction of pot trial experiments for 14 weeks. Plants of the same age were cultivated in CFA to assess their growth, photosynthetic rate and tolerance towards metal toxicity. This study revealed that the CFA was moderately polluted with heavy metals, and a lower photosynthetic rate was recorded for the CFA plants in comparison to the controls (plants grown in soil). Although the CO2 assimilation rate was lower for the CFA plants, increased growth was recorded for all the plants tested. Inductively coupled plasma mass spectrometry (ICP-MS) was used to quantify the amount of trace elements in samples and parameters including translocation factor (TF) and bioconcentration factor (BCF) were used to evaluate the phytoremediation potential of H. splendidum (Thunb.) Less. The results revealed that higher concentrations of Cd, Co, Cr, Cu, Mn and Pb were accumulated in the roots, while As, Ni and Zn were found in the shoots. Elements including As, Cr and Zn reported TF values above 1, indicating the plants' phytoextraction potential. The BCF values for As, Cu and Zn were 1.22, 1.19 and 1.03, indicating effectiveness in the phytostabilization processes. A removal rate efficiency ranging from 18.0 to 56.7% was recorded confirming that, H. splendidum (Thunb.) Less. can be employed for restoration of CFA dams.

13.
Front Toxicol ; 6: 1425537, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39104825

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are a widespread and persistent class of contaminants posing significant environmental and human health concerns. Comprehensive understanding of the modes of action underlying toxicity among structurally diverse PFAS is mostly lacking. To address this need, we recently reported on our application of developing zebrafish to evaluate a large library of PFAS for developmental toxicity. In the present study, we prioritized 15 bioactive PFAS that induced significant morphological effects and performed RNA-sequencing to characterize early transcriptional responses at a single timepoint (48 h post fertilization) after early developmental exposures (8 h post fertilization). Internal concentrations of 5 of the 15 PFAS were measured from pooled whole fish samples across multiple timepoints between 24-120 h post fertilization, and additional temporal transcriptomics at several timepoints (48-96 h post fertilization) were conducted for Nafion byproduct 2. A broad range of differentially expressed gene counts were identified across the PFAS exposures. Most PFAS that elicited robust transcriptomic changes affected biological processes of the brain and nervous system development. While PFAS disrupted unique processes, we also found that similarities in some functional head groups of PFAS were associated with the disruption in expression of similar gene sets. Body burdens after early developmental exposures to select sulfonic acid PFAS, including Nafion byproduct 2, increased from the 24-96 h post fertilization sampling timepoints and were greater than those of sulfonamide PFAS of similar chain lengths. In parallel, the Nafion byproduct 2-induced transcriptional responses increased between 48 and 96 h post fertilization. PFAS characteristics based on toxicity, transcriptomic effects, and modes of action will contribute to further prioritization of PFAS structures for testing and informed hazard assessment.

14.
Environ Res ; 262(Pt 1): 119880, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39214491

RESUMO

Increasingly rigorous data quality (DQ) evaluations and/or screening practices are being applied to environmental and ecotoxicological datasets. DQ is predominantly evaluated by scoring given data against preselected criteria. This study provides the first examination on the effectiveness of score-based DQ evaluation in providing statistically meaningful differentiation of measurements using fish bioconcentration factor (BCF) dataset as an illustration. This is achieved by inspecting how log BCF differs with the built-in overall-DQ and specific-DQ evaluations, and how it is influenced by interactive effects and hierarchy of DQ criteria. Approximately 80-90% of analyzable chemicals show no statistical difference in log BCF between low-quality (LQ) and high-quality (HQ) measurements in overall evaluation (n = 183) or in individual evaluation of 6 DQ criteria (n = 53 to 101). Further examination shows that log BCF may/may not change with different combinations or total number of criteria violations. Tree analysis and nodal structures of deviation in log BCF also reveal the absence of common structural dependence on the criteria violated. Finally, simple averaging of all measurements without DQ differentiation yields comparable log BCFs as those derived using strictly HQ data with ≤0.5 log unit difference in over 93% of the chemicals (n = 158) and no dependence on number of measurements, fraction of LQ measurements, or bioaccumulation potential of the chemicals. For accurate log BCF, DQ appears no more important than having more independent measurements irrespective of their individual DQ statuses. This work concludes by calling for: (i) re-documentation of experimental details in legacy environmental and ecotoxicological datasets, (ii) examination of other DQ-categorized datasets using the tests and tools applied here, and (ii) a thorough and systematic reflection on how DQ should be assessed for modeling, benchmarking, and other data-based analyses or applications.

15.
Environ Sci Pollut Res Int ; 31(40): 53552-53569, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39196321

RESUMO

Advances in sustainable toxic heavy metal treatment technologies are crucial to meet our needs for safer land to develop an urban resilient future. The heavy metals bioaccumulate in the food chain due to their persistence in the soil, which poses a serious challenge to its removal and control. Utilisation of hyperaccumulators to reduce the mobility, accumulation and toxic impact of heavy metals is a promising and ecologically safe technique. Amendments such as biochar and chelates have been shown to enhance the phytoremediation efficiency. However, the potential soil improvement is influenced by the properties of the amendment, plant and metal heterogeneities. In this study, an organic sugarcane bagasse biochar amendment for the 60-day pot experiment using Catharanthus roseus L. (NT) and Chrysopogon zizanioides L. (VT) in a heavy metal-contaminated soil was applied. The influence of biochar on the phytoremediation of lead (Pb), zinc (Zn) and cadmium (Cd) from the soil was explored. The plant survival rate enhanced to 100% with biochar amendment, and the biomass increased from 5.83 to 15 g in Zn-contaminated samples. Nutrients such as potassium concentration are directly correlated to the amendment rates, whereas phosphate decreases beyond the 2% biochar amendment rate in both plants. High heavy metal accumulation capacities with improved growth with biochar indicate the sustainability of the process. The translocation factor (TF) > 1 for Zn in NT represents the phytoextraction efficiencies whereas VT indicates high BCF values in the range of 0.5-3.53 for the amended Zn-contaminated soils. The findings indicate that the amendment rate of 2% improves nutrient cycling, plant biomass and heavy metal removal efficiencies. The insights from this study establish that the synergy between biochar amendment and the selected medicinal plants improved the phytoremediation efficiency.


Assuntos
Biodegradação Ambiental , Catharanthus , Carvão Vegetal , Vetiveria , Metais Pesados , Poluentes do Solo , Carvão Vegetal/química , Poluentes do Solo/metabolismo , Catharanthus/metabolismo , Vetiveria/metabolismo , Solo/química
16.
Chemosphere ; 364: 143020, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39103099

RESUMO

The application of the 3Rs (Replacement, Reduction, and Refinement) in animal experimentation has recently concentrated its efforts on utilizing cellular systems to predict toxicity in organisms. In this context, while refining the data obtained from cell lines, this study assesses their bioaccumulation potential and various methods for extrapolating the in vitro metabolization rate constant to support modelled bioaccumulation assessments for fish and their limitations. For this purpose, the concentrations of the parent compound, phenanthrene, and its major metabolites within the cells and in the medium at various exposure times were quantified. A chemical distribution model (mass balance) was applied to calculate the concentrations of the cell-bioaccessible compounds (Cfree) based on the experimentally determined concentrations. An elevated matching was observed between the in vitro bioconcentration factor (BCF) and the in vivo BCFs reported in the literature for zebrafish liver cells (ZFL). This study demonstrates the importance of further investigating in vitro biotransformation kinetics. The results obtained with the approach developed here provide valuable information to enhance current models. Additionally, it underscores the potential of cell lines as a strategy for rapid, simple, and cost-effective predictions without the need for animal experimentation.


Assuntos
Biotransformação , Poluentes Orgânicos Persistentes , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Linhagem Celular , Poluentes Orgânicos Persistentes/metabolismo , Bioacumulação , Fenantrenos/metabolismo , Fígado/metabolismo
17.
Chemosphere ; 364: 143146, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39181470

RESUMO

The bioconcentration factor (BCF) is an important parameter that gives information regarding the ability of a contaminant to be taken up by organisms from the water. Per- and polyfluoroalkyl substances (PFAS) are widespread in the environment, causing concern regarding their impact on human health. Due to the lack of available bioaccumulation data for most compounds in the PFAS group, we developed a quantitative structure-property relationship (QSPR) model to predict the log BCF for fish (taxonomic class Teleostei), based on experimental data available for the most studied 33 representatives of this group of compounds. Furthermore, we implemented the developed model to predict log BCF for an external dataset of 2209 PFAS. Consequently, 1045 PFAS were found not to be bioaccumulative, 208 were classified as bioaccumulative, and 956 were predicted to be very bioaccumulative. Finally, we obtained the high correlation (R2 = 0.844) between the log BCFs obtained in laboratory and field studies for 13 PFAS. In silico analyses indicate that PFAS bioconcentration depends on the size (chain length - number of CF2 groups in alkyl tail/chain) of a molecule, as well as on the atomic distribution properties. In general, long-chain PFAS - above 8 and 6 carbon atoms for perfluorinated carboxylic acids (PFCAs)and perfluorinated sulfonic acids (PFSAs), respectively - tend to bioconcentrate more compared to the short-chain ones. In conclusion, predicting BCF on fish is possible for a wide range of fluorinated compounds, which can be further used for estimating PFAS behavior in the environment.


Assuntos
Peixes , Fluorocarbonos , Relação Quantitativa Estrutura-Atividade , Poluentes Químicos da Água , Fluorocarbonos/metabolismo , Fluorocarbonos/análise , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/análise , Peixes/metabolismo , Animais , Monitoramento Ambiental/métodos
18.
Int J Phytoremediation ; : 1-12, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39120257

RESUMO

Mercury (Hg) pollution in Ghana through mining has become a serious environmental challenge. This study investigates the potential of Cirsium arvense to photostabilize Hg using electrokinetic current with or without an iodide solution in gold mine tailings heavily contaminated through mining activities in southern Ghana. An initial Hg concentration of 9.60 mg/kg using cold vapor atomic absorption spectrometry (CVAAS) was determined. The biological absorption coefficient, bioconcentration factor, and translocation factor of Hg have been presented. Cirsium arvense therefore had a higher bioconcentration factor (BCF) of 2.6-5.15 mg/kg, and a transfer factor (TF) of 0.24-0.36 indicating a higher efficiency for phytostabilization. Both the rate and time of extractions of Hg from the tailings by Cirsium arvense are efficiently improved in the combined electric current and iodide treatment. Plant and electric current combined treatment and plant and iodide combined treatment had only 60 and 50% phytostabilization rates, respectively. The combined plant, iodide, and electric current treatment has proven to be superior with about >90% Hg removal rate. Therefore, the combined plant, iodide, and electric current treatment resulted in a higher Hg removal efficiency by Cirsium arvense in a shorter period due to higher solubilization rate and electromigration effects on Hg species.

19.
Environ Sci Technol ; 58(35): 15650-15660, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39051472

RESUMO

Accurate prediction of parameters related to the environmental exposure of chemicals is crucial for the sound management of chemicals. However, the lack of large data sets for training models may result in poor prediction accuracy and robustness. Herein, integrated transfer learning (TL) and multitask learning (MTL) was proposed for constructing a graph neural network (GNN) model (abbreviated as TL-MTL-GNN model) using n-octanol/water partition coefficients as a source domain. The TL-MTL-GNN model was trained to predict three bioaccumulation parameters based on enlarged data sets that cover 2496 compounds with at least one bioaccumulation parameter. Results show that the TL-MTL-GNN model outperformed single-task GNN models with and without the TL, as well as conventional machine learning models trained with molecular descriptors or fingerprints. Applicability domains were characterized by a state-of-the-art structure-activity landscape-based (abbreviated as ADSAL) methodology. The TL-MTL-GNN model coupled with the optimal ADSAL was employed to predict bioaccumulation parameters for around 60,000 chemicals, with more than 13,000 compounds identified as bioaccumulative chemicals. The high predictive accuracy and robustness of the TL-MTL-GNN model demonstrate the feasibility of integrating the TL and MTL strategy in modeling small-sized data sets. The strategy holds significant potential for addressing small data challenges in modeling environmental chemicals.


Assuntos
Aprendizado de Máquina , Redes Neurais de Computação , Bioacumulação
20.
J Hazard Mater ; 476: 135102, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39003805

RESUMO

The Liquid Organic Hydrogen Carrier (LOHC) technology offers a technically attractive way for hydrogen storage. If LOHC systems were to fully replace liquid fossil fuels, they would need to be handled at the multi-million tonne scale. To date, LOHC systems on the market based on toluene or benzyltoluene still offer potential for improvements. Thus, it is of great interest to investigate potential LOHCs that promise better performance and environmental/human hazard profiles. In this context, we investigated the acute aquatic toxicity of oxygen-containing LOHC (oxo-LOHC) systems. Toxic Ratio (TR) values of oxo-LOHC compounds classify them baseline toxicants (0.1 < TR < 10). Additionally, the mixture toxicity test conducted with D. magna suggests that the overall toxicity of a benzophenone-based system can be accurately predicted using a concentration addition model. The estimation of bioconcentration factors (BCF) through the use of the membrane-water partition coefficient indicates that oxo-LOHCs are unlikely to be bioaccumulative (BCF < 2000). None of the oxo-LOHC compounds exhibited hormonal disrupting activities at the tested concentration of 2 mg/L in yeast-based reporter gene assays. Therefore, the oxo-LOHC systems seem to pose a low level of hazard and deserve more attention in ongoing studies searching for the best hydrogen storage technologies.


Assuntos
Daphnia , Estrogênios , Poluentes Químicos da Água , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/química , Humanos , Estrogênios/toxicidade , Estrogênios/química , Daphnia/efeitos dos fármacos , Animais , Bioacumulação , Androgênios/toxicidade , Androgênios/química , Disruptores Endócrinos/toxicidade , Disruptores Endócrinos/química , Hidrogênio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA