Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39000079

RESUMO

Antineoplastic therapy is one of the main research themes of this century. Modern approaches have been implemented to target and heighten the effect of cytostatic drugs on tumors and diminish their general/unspecific toxicity. In this context, antibody-drug conjugates (ADCs) represent a promising and successful strategy. The aim of this review was to assess different aspects regarding ADCs. They were presented from a chemical and a pharmacological perspective and aspects like structure, conjugation and development particularities alongside effects, clinical trials, safety issues and perspectives and challenges for future use of these drugs were discussed. Representative examples include but are not limited to the following main structural components of ADCs: monoclonal antibodies (trastuzumab, brentuximab), linkers (pH-sensitive, reduction-sensitive, peptide-based, phosphate-based, and others), and payloads (doxorubicin, emtansine, ravtansine, calicheamicin). Regarding pharmacotherapy success, the high effectiveness expectation associated with ADC treatment is supported by the large number of ongoing clinical trials. Major aspects such as development strategies are first discussed, advantages and disadvantages, safety and efficacy, offering a retrospective insight on the subject. The second part of the review is prospective, focusing on various plans to overcome the previously identified difficulties.


Assuntos
Imunoconjugados , Neoplasias , Humanos , Imunoconjugados/uso terapêutico , Imunoconjugados/química , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais/química
2.
Drug Discov Today ; 29(8): 104057, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38844064

RESUMO

Antibody-drug conjugates (ADCs), from prototypes in the 1980s to first- and second-generation products in the 2000s, and now in their multiformats, have progressed tremendously to meet oncological challenges. Currently, 13 ADCs have been approved for medical practice, with over 200 candidates in clinical trials. Moreover, ADCs have evolved into different formats, including bispecific ADCs, probody-drug conjugates, pH-responsive ADCs, target-degrading ADCs, and immunostimulating ADCs. Technologies from biopharmaceutical industries have a crucial role in the clinical transition of these novel biotherapeutics. In this review, we highlight several features contributing to the prosperity of bioindustrial ADC development. Various proprietary technologies from biopharmaceutical companies are discussed. Such advances in biopharmaceutical industries are the backbone for the success of ADCs in development and clinical application.

3.
Arch Toxicol ; 98(6): 1705-1716, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38555326

RESUMO

Amanita phalloides is the primary species responsible for fatal mushroom poisoning, as its main toxin, α-amanitin, irreversibly and potently inhibits eukaryotic RNA polymerase II (RNAP II), leading to cell death. There is no specific antidote for α-amanitin, which hinders its clinical application. However, with the advancement of precision medicine in oncology, including the development of antibody-drug conjugates (ADCs), the potential value of various toxic small molecules has been explored. These ADCs ingeniously combine the targeting precision of antibodies with the cytotoxicity of small-molecule payloads to precisely kill tumor cells. We searched PubMed for studies in this area using these MeSH terms "Amanitins, Alpha-Amanitin, Therapeutic use, Immunotherapy, Immunoconjugates, Antibodies" and did not limit the time interval. Recent studies have conducted preclinical experiments on ADCs based on α-amanitin, showing promising therapeutic effects and good tolerance in primates. The current challenges include the not fully understood toxicological mechanism of α-amanitin and the lack of clinical studies to evaluate the therapeutic efficacy of ADCs developed based on α-amanitin. In this article, we will discuss the role and therapeutic efficacy of α-amanitin as an effective payload in ADCs for the treatment of various cancers, providing background information for the research and application strategies of current and future drugs.


Assuntos
Alfa-Amanitina , Imunoconjugados , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Animais , Imunoconjugados/uso terapêutico , Imunoconjugados/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , RNA Polimerase II/metabolismo , Intoxicação Alimentar por Cogumelos/tratamento farmacológico
4.
Oncol Res Treat ; 47(1-2): 18-41, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38016427

RESUMO

BACKGROUND: Topoisomerase I is an enzyme that plays a crucial part in DNA replication and transcription by the relaxation of supercoiled double-stranded DNA. Topoisomerase I inhibitors bind to the topoisomerase I cleavage complex, thereby stabilizing it and preventing the religation of the DNA strands, leading to DNA damage, cell cycle arrest, and apoptosis. Various topoisomerase I inhibitors have been evaluated in solid tumors, and irinotecan and topotecan have been approved for the treatment of epithelial malignancies. None of them have been approved for sarcoma, a diverse group of rare solid tumors with an unmet need for effective treatments. SUMMARY: Topoisomerase I inhibitors have been evaluated in preclinical studies as single agents or in combination in solid tumors, some of which have included sarcomas where activity was observed. Clinical trials evaluating topoisomerase I inhibitors for the treatment of sarcoma have shown limited efficacy as monotherapy. In combination with other cytotoxic agents, topoisomerase I inhibitors have become part of clinical routine in selected sarcoma subtypes. Regimens such as irinotecan/vincristine/temozolomide are used in relapsed rhabdomyosarcoma, irinotecan/temozolomide and vincristine/topotecan/cyclophosphamide are commonly given in refractory Ewing sarcoma, and topotecan/carboplatin showed some activity in advanced soft tissue sarcoma. This review provides an overview of key studies with topoisomerase I inhibitors for the treatment of sarcoma. Topoisomerase I inhibitors are currently also being assessed as "payloads" for antibody-drug conjugates (ADCs), allowing for the targeting of specific antigen-expressing tumor cells and the delivery of the inhibitor directly to the tumor cells with the potential of enhancing therapeutic efficacy while minimizing systemic toxicity. Here, we also provide a brief overview on topoisomerase I-ADCs. KEY MESSAGE: Topoisomerase I inhibitors are an important component of some systemic therapies for selected sarcomas and have potent cytotoxic properties and pharmacological characteristics that make them relevant candidates as payloads for the development of sarcoma-specific ADCs. ADCs are antibody-based targeted agents allowing for efficient and specific delivery of a given drug to the tumor cell. Topoisomerase I-ADCs are a novel targeted delivery approach which may have the potential to improve the therapeutic index of topoisomerase I inhibitors in the treatment of sarcoma and warrants investigation in a broad variety of mesenchymal malignancies.


Assuntos
Antineoplásicos , Imunoconjugados , Rabdomiossarcoma , Humanos , Inibidores da Topoisomerase I/farmacologia , Inibidores da Topoisomerase I/uso terapêutico , Irinotecano , Topotecan/farmacologia , Topotecan/uso terapêutico , DNA Topoisomerases Tipo I/uso terapêutico , Vincristina , Temozolomida/uso terapêutico , Imunoconjugados/uso terapêutico , Recidiva Local de Neoplasia/tratamento farmacológico , Rabdomiossarcoma/tratamento farmacológico
5.
J Pers Med ; 13(9)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37763107

RESUMO

Antibody-drug conjugates (ADCs) are complex chemical structures composed of a monoclonal antibody, serving as a link to target cells, which is conjugated with a potent cytotoxic drug (i.e., payload) through a chemical linker. Inspired by Paul Ehrlich's concept of the ideal anticancer drug as a "magic bullet", ADCs are also highly specific anticancer agents, as they have been demonstrated to recognize, bind, and neutralize cancer cells, limiting injuries to normal cells. ADCs are among the newest pharmacologic breakthroughs in treating solid and hematologic malignancies. Indeed, in recent years, various ADCs have been approved by the Food and Drug Administration and European Medicines Agency for the treatment of several cancers, resulting in a "practice-changing" approach. However, despite these successes, no ADC is approved for treating patients affected by renal cell carcinoma (RCC). In the present paper, we thoroughly reviewed the current literature and summarized preclinical studies and clinical trials that evaluated the activity and toxicity profile of ADCs in RCC patients. Moreover, we scrutinized the potential causes that, until now, hampered the therapeutical success of ADCs in those patients. Finally, we discussed novel strategies that would improve the development of ADCs and their efficacy in treating RCC patients.

6.
Cancer Treat Rev ; 116: 102546, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37023499

RESUMO

Despite significant advances in the treatment of cervical, ovarian, and uterine cancers with the approvals of checkpoint and PARP inhibitors into standard treatment, patients with recurrent metastatic gynecologic malignancies still experience poor outcomes, and most of these patients will experience disease relapse. Once standard preferred treatments are exhausted, options have historically been limited to treatments associated with poor outcomes and notable toxicities. Consequently, novel therapies that are effective and well-tolerated are needed for patients with recurrent and metastatic gynecologic malignancies. Antibody-drug conjugates (ADCs) are a class of targeted therapies that are well established in several cancers including hematologic malignancies and some solid tumors. Significant strides in ADC technology and design have led to improvements in efficacy and safety with newer-generation ADCs. Consequently, ADCs are gaining traction in gynecologic cancers with the recent US Food and Drug Administration approvals of tisotumab vedotin in cervical cancer and mirvetuximab soravtansine in ovarian cancer. Many additional ADCs against various targets are being explored in patients with metastatic or recurrent gynecologic malignancies. The purpose of this review is to summarize the nuanced structural and functional properties of ADCs, while outlining opportunities for innovation. Further, we highlight the ADCs in clinical development for gynecologic malignancies, exploring how ADCs may be able to address the clinical care gap for patients with gynecologic cancers.


Assuntos
Antineoplásicos , Neoplasias dos Genitais Femininos , Neoplasias Hematológicas , Imunoconjugados , Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias dos Genitais Femininos/tratamento farmacológico , Recidiva Local de Neoplasia/tratamento farmacológico , Imunoconjugados/uso terapêutico , Neoplasias Hematológicas/tratamento farmacológico , Neoplasias do Colo do Útero/tratamento farmacológico , Antineoplásicos/uso terapêutico
7.
Clin. transl. oncol. (Print) ; 24(3): 407-431, marzo 2022. graf
Artigo em Inglês | IBECS | ID: ibc-203538

RESUMO

An antibody–drug conjugate (ADC) is an advanced chemotherapeutic option with immense promises in treating many tumor. They are designed to selectively attack and kill neoplastic cells with minimal toxicity to normal tissues. ADCs are complex engineered immunoconjugates that comprise a monoclonal antibody for site-directed delivery and cytotoxic payload for targeted destruction of malignant cells. Therefore, it enables the reduction of off-target toxicities and enhances the therapeutic index of the drug. Hepatocellular carcinoma (HCC) is a solid tumor that shows high heterogeneity of molecular phenotypes and is considered the second most common cause of cancer-related death. Studies show enormous potential for ADCs targeting GPC3 and CD24 and other tumor-associated antigens in HCC with their high, selective expression and show potential outputs in preclinical evaluations. The review mainly highlights the preclinical evaluation of different antigen-targeted ADCs such as MetFab-DOX, Anti-c-Met IgG-OXA, Anti CD 24, ANC–HN-01, G7mab-DOX, hYP7-DCand hYP7-PC, Anti-CD147 ILs-DOX and AC133-vcMMAF against hepatocellular carcinoma and its future relevance.


Assuntos
Carcinoma/tratamento farmacológico , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/terapia , Avaliação Pré-Clínica de Medicamentos , Anticorpos/farmacologia , Imunoconjugados/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico
8.
Clin Transl Oncol ; 24(3): 407-431, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34595736

RESUMO

An antibody-drug conjugate (ADC) is an advanced chemotherapeutic option with immense promises in treating many tumor. They are designed to selectively attack and kill neoplastic cells with minimal toxicity to normal tissues. ADCs are complex engineered immunoconjugates that comprise a monoclonal antibody for site-directed delivery and cytotoxic payload for targeted destruction of malignant cells. Therefore, it enables the reduction of off-target toxicities and enhances the therapeutic index of the drug. Hepatocellular carcinoma (HCC) is a solid tumor that shows high heterogeneity of molecular phenotypes and is considered the second most common cause of cancer-related death. Studies show enormous potential for ADCs targeting GPC3 and CD24 and other tumor-associated antigens in HCC with their high, selective expression and show potential outputs in preclinical evaluations. The review mainly highlights the preclinical evaluation of different antigen-targeted ADCs such as MetFab-DOX, Anti-c-Met IgG-OXA, Anti CD 24, ANC-HN-01, G7mab-DOX, hYP7-DCand hYP7-PC, Anti-CD147 ILs-DOX and AC133-vcMMAF against hepatocellular carcinoma and its future relevance.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Imunoconjugados/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos , Humanos
9.
Methods Mol Biol ; 2371: 375-389, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34596859

RESUMO

Cell-penetrating peptides (CPPs) are versatile tools to deliver various molecules into different cell types. The majority of CPPs are usually represented by linear structures, but numerous recent studies demonstrated cyclization to be an effective strategy leading to favorable biological activities. Here we describe two different methods for the side chain and backbone cyclization of CPPs . Furthermore, we highlight straightforward procedures for the covalent coupling of fluorophores or cytotoxic payloads.


Assuntos
Peptídeos Penetradores de Células/metabolismo , Ciclização
10.
Explor Target Antitumor Ther ; 3(6): 763-794, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36654819

RESUMO

Antibody-drug conjugates (ADCs) are a recent, revolutionary approach for malignancies treatment, designed to provide superior efficacy and specific targeting of tumor cells, compared to systemic cytotoxic chemotherapy. Their structure combines highly potent anti-cancer drugs (payloads or warheads) and monoclonal antibodies (Abs), specific for a tumor-associated antigen, via a chemical linker. Because the sensitive targeting capabilities of monoclonal Abs allow the direct delivery of cytotoxic payloads to tumor cells, these agents leave healthy cells unharmed, reducing toxicity. Different ADCs have been approved by the US Food and Drug Administration (FDA) and the European Medicines Agency (EMA) for the treatment of a wide range of malignant conditions, both as monotherapy and in combination with chemotherapy, including for lymphoma patients. Over 100 ADCs are under preclinical and clinical investigation worldwide. This paper it provides an overview of approved and promising ADCs in clinical development for the treatment of lymphoma. Each component of the ADC design, their mechanism of action, and the highlights of their clinical development progress are discussed.

11.
Antibodies (Basel) ; 10(4)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34842621

RESUMO

Antibody-drug conjugates (ADCs) are innovative biopharmaceutical products in which a monoclonal antibody is linked to a small molecule drug with a stable linker. Most of the ADCs developed so far are for treating cancer, but there is enormous potential for using ADCs to treat other diseases. Currently, ten ADCs have been approved by the United States Food and Drug Administration (FDA), and more than 90 ADCs are under worldwide clinical development. Monoclonal antibodies have evolved from research tools to powerful therapeutics in the past 30 years. Tremendous strides have been made in antibody discovery, protein bioengineering, formulation, and delivery devices. This manuscript provides an overview of the biology, chemistry, and biophysical properties of each component of ADC design. This review summarizes the advances and challenges in the field to date, with an emphasis on antibody conjugation, linker-payload chemistry, novel payload classes, drug-antibody ratio (DAR), and product development. The review emphasizes the lessons learned in the development of oncology antibody conjugates and look towards future innovations enabling other therapeutic indications. The review discusses resistance mechanisms to ADCs, and give an opinion on future perspectives.

12.
Drug Discov Today ; 26(8): 1857-1874, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34224904

RESUMO

Duocarmycins are a class of DNA minor-groove-binding alkylating molecules. For the past decade, various duocarmycin analogues have been used as payloads in the development of antibody-drug conjugates (ADCs). Currently, more than 15 duocarmycin-based ADCs have been studied preclinically, and some of them such as SYD985 have been granted Fast-Track Designation status. Nevertheless, progress in duocarmycin-based ADCs also faces challenges, with setbacks including the termination of BMS-936561/MDX-1203. In this review, we discuss issues associated with the efficacy, pharmacokinetic profile, and toxicological activity of these biotherapeutics. Furthermore, we summarize the latest advances in duocarmycin-based ADCs that have different target specificities and linker chemistries. Evidence from preclinical and clinical studies has indicated that duocarmycin-based ADCs are promising biotherapeutics for oncological application in the future.


Assuntos
Antineoplásicos/administração & dosagem , Duocarmicinas/administração & dosagem , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Desenvolvimento de Medicamentos/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Duocarmicinas/farmacocinética , Duocarmicinas/farmacologia , Humanos , Imunoconjugados/administração & dosagem , Imunoconjugados/farmacocinética , Imunoconjugados/farmacologia
13.
MAbs ; 13(1): 1951427, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34291723

RESUMO

Antibody-drug conjugates (ADCs) are a rapidly expanding class of biotherapeutics that utilize antibodies to selectively deliver cytotoxic drugs to the tumor site. As of May 2021, the U.S. Food and Drug Administration (FDA) has approved ten ADCs, namely Adcetris®, Kadcyla®, Besponsa®, Mylotarg®, Polivy®, Padcev®, Enhertu®, Trodelvy®, Blenrep®, and Zynlonta™ as monotherapy or combinational therapy for breast cancer, urothelial cancer, myeloma, acute leukemia, and lymphoma. In addition, over 80 investigational ADCs are currently being evaluated in approximately 150 active clinical trials. Despite the growing interest in ADCs, challenges remain to expand their therapeutic index (with greater efficacy and less toxicity). Recent advances in the manufacturing technology for the antibody, payload, and linker combined with new bioconjugation platforms and state-of-the-art analytical techniques are helping to shape the future development of ADCs. This review highlights the current status of marketed ADCs and those under clinical investigation with a focus on translational strategies to improve product quality, safety, and efficacy.


Assuntos
Anticorpos Antineoplásicos , Antineoplásicos Imunológicos , Sistemas de Liberação de Medicamentos , Imunoconjugados , Neoplasias , Anticorpos Antineoplásicos/química , Anticorpos Antineoplásicos/imunologia , Anticorpos Antineoplásicos/uso terapêutico , Antineoplásicos Imunológicos/química , Antineoplásicos Imunológicos/imunologia , Antineoplásicos Imunológicos/uso terapêutico , Ensaios Clínicos como Assunto , Humanos , Imunoconjugados/química , Imunoconjugados/imunologia , Imunoconjugados/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/imunologia
14.
Molecules ; 26(10)2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-34063364

RESUMO

Antibody-drug conjugates (ADCs) are a family of targeted therapeutic agents for the treatment of cancer. ADC development is a rapidly expanding field of research, with over 80 ADCs currently in clinical development and eleven ADCs (nine containing small-molecule payloads and two with biological toxins) approved for use by the FDA. Compared to traditional small-molecule approaches, ADCs offer enhanced targeting of cancer cells along with reduced toxic side effects, making them an attractive prospect in the field of oncology. To this end, this tutorial review aims to serve as a reference material for ADCs and give readers a comprehensive understanding of ADCs; it explores and explains each ADC component (monoclonal antibody, linker moiety and cytotoxic payload) individually, highlights several EMA- and FDA-approved ADCs by way of case studies and offers a brief future perspective on the field of ADC research.


Assuntos
Antineoplásicos/uso terapêutico , Imunoconjugados/uso terapêutico , Neoplasias/tratamento farmacológico , Antineoplásicos/química , Ensaios Clínicos como Assunto , Aprovação de Drogas , Humanos , Imunoconjugados/química
15.
Molecules ; 25(20)2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33081383

RESUMO

Antibody-drug conjugates (ADCs) are novel drugs that exploit the specificity of a monoclonal antibody (mAb) to reach target antigens expressed on cancer cells for the delivery of a potent cytotoxic payload. ADCs provide a unique opportunity to deliver drugs to tumor cells while minimizing toxicity to normal tissue, achieving wider therapeutic windows and enhanced pharmacokinetic/pharmacodynamic properties. To date, nine ADCs have been approved by the FDA and more than 80 ADCs are under clinical development worldwide. In this paper, we provide an overview of the biology and chemistry of each component of ADC design. We briefly discuss the clinical experience with approved ADCs and the various pathways involved in ADC resistance. We conclude with perspectives about the future development of the next generations of ADCs, including the role of molecular imaging in drug development.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/uso terapêutico , Imunoconjugados/uso terapêutico , Neoplasias/tratamento farmacológico , Anticorpos Monoclonais/imunologia , Antineoplásicos/imunologia , Proliferação de Células/efeitos dos fármacos , Humanos , Imunoconjugados/imunologia , Neoplasias/imunologia
16.
SLAS Discov ; 25(8): 843-868, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32192384

RESUMO

The targeted delivery of potent cytotoxic molecules into cancer cells is considered a promising anticancer strategy. The design of clinically effective antibody-drug conjugates (ADCs), in which biologically active drugs are coupled through chemical linkers to monoclonal antibodies, has presented challenges for pharmaceutical researchers. After 30 years of intensive research and development activities, only seven ADCs have been approved for clinical use; two have received fast-track designation and two breakthrough therapy designation from the Food and Drug Administration. There is continued interest in the field, as documented by the growing number of candidates in clinical development. This review aims to summarize the most recent innovations that have been applied to the design of ADCs undergoing early- and late-stage clinical trials. Discovery and rational optimization of new payloads, chemical linkers, and antibody formats have improved the therapeutic index of next-generation ADCs, ultimately resulting in improved clinical benefit for the patients.


Assuntos
Sistemas de Liberação de Medicamentos , Desenho de Fármacos , Imunoconjugados/imunologia , Neoplasias/tratamento farmacológico , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos Imunológicos/imunologia , Antineoplásicos Imunológicos/uso terapêutico , Humanos , Imunoconjugados/genética , Imunoconjugados/uso terapêutico , Terapia de Alvo Molecular , Neoplasias/imunologia
17.
Acta Pharmaceutica Sinica ; (12): 1971-1977, 2020.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-825175

RESUMO

Antibody drug conjugates (ADCs), as they combine the targetability of monoclonal antibody and cytotoxicity of small molecules, are a growing class of therapeutics for cancer. The key factor of ADCs development is the accurate selection of parameters including tumor target, monoclonal antibody, cytotoxic payload, and linkage strategy of antibody to payload. Here, we summarize the main elements in the structural design and the development of ADCs, as well as the regulatory consideration of product manufacturing and control, which would be helpful for the research and development of ADCs.

18.
Annu Rev Med ; 69: 191-207, 2018 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-29414262

RESUMO

The concept of exploiting the specific binding properties of monoclonal antibodies as a mechanism for selective delivery of cytotoxic agents to tumor cells is an attractive solution to the challenge of increasing the therapeutic index of cell-killing agents for treating cancer. All three parts of an antibody-drug conjugate (ADC)-the antibody, the cytotoxic payload, and the linker chemistry that joins them together-as well as the biologic properties of the cell-surface target antigen are important in designing an effective anticancer agent. The approval of brentuximab vedotin in 2011 for treating relapsed Hodgkin's lymphoma and systemic anaplastic large cell lymphoma, and the approval of ado-trastuzumab emtansine in 2013 for treating HER2-positive metastatic breast cancer, have sparked vigorous research in the field, with >65 ADCs currently in clinical evaluation. This review highlights the ADCs that are approved for marketing, in pivotal clinical trials, or in at least phase II clinical development for treating both hematologic malignancies and solid tumors.


Assuntos
Imunoconjugados/uso terapêutico , Neoplasias/tratamento farmacológico , Ado-Trastuzumab Emtansina , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/secundário , Brentuximab Vedotin , Desenvolvimento de Medicamentos , Doença de Hodgkin/tratamento farmacológico , Humanos , Linfoma Anaplásico de Células Grandes/tratamento farmacológico , Maitansina/análogos & derivados , Maitansina/uso terapêutico , Trastuzumab/uso terapêutico
19.
Protein Pept Lett ; 24(8): 686-695, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28741467

RESUMO

Over the last years, a novel class of anti-cancer drugs named antibody-drug conjugates (ADCs) has been developed. Due to their limited off-target toxicity but highly potent cytotoxicity at tumor sites, ADCs have proven to be a good alternative to ordinary cancer treatment, such as chemotherapy or combination therapy. Numerous enhancements in antibody-drug engineering led to highly potent tumor targeting drugs with a wide therapeutic window. Two ADCs (Brentuximab vedotin and Trastuzumab emtansine) are already on the market and many others are in clinical trials. However, unstable linkers, low drug potency and unwanted bystander-effects are only some of the drawbacks of ADCs. Enzymes used in combination with prodrugs happen to be a promising alternative. The glyco-enzyme horseradish peroxidase (HRP) has proven to activate the hormone indole-3-acetic acid (IAA) to a highly potent cytotoxic drug. This combination of IAA and HRP has been investigated for the use in strategies such as gene-directed enzyme prodrug therapy (GDEPT) and antibody-directed enzyme prodrug therapy (ADEPT). This article reviews the current state of research in ADC engineering and describes the potential major enhancements through use of glycoenzymes in combination with a prodrug.


Assuntos
Anticorpos Monoclonais/biossíntese , Antineoplásicos Imunológicos/uso terapêutico , Imunoconjugados/uso terapêutico , Maitansina/análogos & derivados , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Trastuzumab/uso terapêutico , Ado-Trastuzumab Emtansina , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos Imunológicos/metabolismo , Brentuximab Vedotin , Ensaios Clínicos como Assunto , Desenho de Fármacos , Glicoconjugados/síntese química , Glicoconjugados/uso terapêutico , Peroxidase do Rábano Silvestre/metabolismo , Peroxidase do Rábano Silvestre/uso terapêutico , Humanos , Imunoconjugados/química , Ácidos Indolacéticos/metabolismo , Maitansina/biossíntese , Maitansina/uso terapêutico , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Pró-Fármacos/síntese química , Pró-Fármacos/uso terapêutico , Trastuzumab/biossíntese , Moduladores de Tubulina/síntese química , Moduladores de Tubulina/uso terapêutico
20.
Bioorg Med Chem Lett ; 26(6): 1542-1545, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26898815

RESUMO

Trastuzumab conjugates consisting of exatecan derivatives were prepared and their biological activities and physicochemical properties were evaluated. The ADCs showed strong efficacy and a low aggregation rate. The exatecan derivatives were covalently connected via a peptidyl spacer (Gly-Gly-Phe-Gly), which is assumed to be stable in circulation, and were cleaved by lysosomal enzymes following ADC internalization into tumor tissue. These anti-HER2 ADCs exhibited a high potency, specifically against HER2-positive cancer cell lines in vitro. The ADCs, bearing exatecan derivatives which have more than two methylene chains, exhibited superior cytotoxicity. It was speculated that steric hindrance of the cleavable amide moiety could be involved in the drug release. The adequate alkyl lengths of exatecan derivatives (13, 14, 15) were from two to four in terms of aggregation rate. The ADC having a hydrophilic moiety showed good efficacy in a HER2-positive and Trastuzumab-resistant breast carcinoma cell model in mice.


Assuntos
Anticorpos Monoclonais Humanizados/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Camptotecina/análogos & derivados , Neoplasias Mamárias Experimentais/tratamento farmacológico , Trastuzumab/farmacologia , Animais , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/farmacologia , Antineoplásicos/administração & dosagem , Camptotecina/administração & dosagem , Camptotecina/química , Camptotecina/metabolismo , Camptotecina/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Injeções Intraventriculares , Neoplasias Mamárias Experimentais/patologia , Camundongos , Conformação Molecular , Relação Estrutura-Atividade , Trastuzumab/administração & dosagem , Trastuzumab/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...