Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 922
Filtrar
1.
Neurospine ; 21(3): 868-877, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39363467

RESUMO

Recent advances in robotics technology and artificial intelligence (AI) have sparked increased interest in humanoid robots that resemble humans and social robots capable of interacting socially. Alongside this trend, a new field of robot research called human-robot interaction (HRI) is gaining prominence. The aim of this review paper is to introduce the fundamental concepts of HRI and social robots, examine their current applications in the medical field, and discuss the current and future prospects of HRI and social robots in spinal care. HRI is an interdisciplinary field where robotics, AI, social sciences, design, and various disciplines collaborate organically to develop robots that successfully interact with humans as the ultimate goal. While social robots are not yet widely deployed in clinical environments, ongoing HRI research encompasses various areas such as nursing and caregiving support, social and emotional assistance, rehabilitation and cognitive enhancement for the elderly, medical information provision and education, as well as patient monitoring and data collection. Although still in its early stages, research related to spinal care includes studies on robotic support for rehabilitation exercises, assistance in gait training, and questionnaire-based assessments for spinal pain. Future applications of social robots in spinal care will require diverse HRI research efforts and active involvement from spinal specialists.

2.
Front Robot AI ; 11: 1345693, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39376249

RESUMO

Introduction: In human-robot interaction (HRI), understanding human intent is crucial for robots to perform tasks that align with user preferences. Traditional methods that aim to modify robot trajectories based on language corrections often require extensive training to generalize across diverse objects, initial trajectories, and scenarios. This work presents ExTraCT, a modular framework designed to modify robot trajectories (and behaviour) using natural language input. Methods: Unlike traditional end-to-end learning approaches, ExTraCT separates language understanding from trajectory modification, allowing robots to adapt language corrections to new tasks-including those with complex motions like scooping-as well as various initial trajectories and object configurations without additional end-to-end training. ExTraCT leverages Large Language Models (LLMs) to semantically match language corrections to predefined trajectory modification functions, allowing the robot to make necessary adjustments to its path. This modular approach overcomes the limitations of pre-trained datasets and offers versatility across various applications. Results: Comprehensive user studies conducted in simulation and with a physical robot arm demonstrated that ExTraCT's trajectory corrections are more accurate and preferred by users in 80% of cases compared to the baseline. Discussion: ExTraCT offers a more explainable approach to understanding language corrections, which could facilitate learning human preferences. We also demonstrated the adaptability and effectiveness of ExTraCT in a complex scenarios like assistive feeding, presenting it as a versatile solution across various HRI applications.

3.
Front Robot AI ; 11: 1419584, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39391748

RESUMO

Care and nursing training (CNT) refers to developing the ability to effectively respond to patient needs by investigating their requests and improving trainees' care skills in a caring environment. Although conventional CNT programs have been conducted based on videos, books, and role-playing, the best approach is to practice on a real human. However, it is challenging to recruit patients for continuous training, and the patients may experience fatigue or boredom with iterative testing. As an alternative approach, a patient robot that reproduces various human diseases and provides feedback to trainees has been introduced. This study presents a patient robot that can express feelings of pain, similarly to a real human, in joint care education. The two primary objectives of the proposed patient robot-based care training system are (a) to infer the pain felt by the patient robot and intuitively provide the trainee with the patient's pain state, and (b) to provide facial expression-based visual feedback of the patient robot for care training.

4.
Front Robot AI ; 11: 1359782, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39328470

RESUMO

Interaction is a dynamic process that evolves in real time. Participants interpret and orient themselves towards turns of speech based on expectations of relevance and social/conversational norms (that have been extensively studied in the field of Conversation analysis). A true challenge to Human Robot Interaction (HRI) is to develop a system capable of understanding and adapting to the changing context, where the meaning of a turn is construed based on the turns that have come before. In this work, we identify issues arising from the inadequate handling of the sequential flow within a corpus of in-the-wild HRIs in an open-world university library setting. The insights gained from this analysis can be used to guide the design of better systems capable of handling complex situations. We finish by surveying efforts to mitigate the identified problems from a natural language processing/machine dialogue management perspective.

5.
Sensors (Basel) ; 24(17)2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39275383

RESUMO

The paradigm of Industry 5.0 pushes the transition from the traditional to a novel, smart, digital, and connected industry, where well-being is key to enhance productivity, optimize man-machine interaction and guarantee workers' safety. This work aims to conduct a systematic review of current methodologies for monitoring and analyzing physical and cognitive ergonomics. Three research questions are addressed: (1) which technologies are used to assess the physical and cognitive well-being of workers in the workplace, (2) how the acquired data are processed, and (3) what purpose this well-being is evaluated for. This way, individual factors within the holistic assessment of worker well-being are highlighted, and information is provided synthetically. The analysis was conducted following the PRISMA 2020 statement guidelines. From the sixty-five articles collected, the most adopted (1) technological solutions, (2) parameters, and (3) data analysis and processing were identified. Wearable inertial measurement units and RGB-D cameras are the most prevalent devices used for physical monitoring; in the cognitive ergonomics, and cardiac activity is the most adopted physiological parameter. Furthermore, insights on practical issues and future developments are provided. Future research should focus on developing multi-modal systems that combine these aspects with particular emphasis on their practical application in real industrial settings.


Assuntos
Ergonomia , Local de Trabalho , Humanos , Cognição/fisiologia , Ergonomia/instrumentação , Indústrias , Saúde Ocupacional , Dispositivos Eletrônicos Vestíveis , Local de Trabalho/psicologia
6.
Front Robot AI ; 11: 1409712, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39301050

RESUMO

Introduction: Robots are being introduced into increasingly social environments. As these robots become more ingrained in social spaces, they will have to abide by the social norms that guide human interactions. At times, however, robots will violate norms and perhaps even deceive their human interaction partners. This study provides some of the first evidence for how people perceive and evaluate robot deception, especially three types of deception behaviors theorized in the technology ethics literature: External state deception (cues that intentionally misrepresent or omit details from the external world: e.g., lying), Hidden state deception (cues designed to conceal or obscure the presence of a capacity or internal state the robot possesses), and Superficial state deception (cues that suggest a robot has some capacity or internal state that it lacks). Methods: Participants (N = 498) were assigned to read one of three vignettes, each corresponding to one of the deceptive behavior types. Participants provided responses to qualitative and quantitative measures, which examined to what degree people approved of the behaviors, perceived them to be deceptive, found them to be justified, and believed that other agents were involved in the robots' deceptive behavior. Results: Participants rated hidden state deception as the most deceptive and approved of it the least among the three deception types. They considered external state and superficial state deception behaviors to be comparably deceptive; but while external state deception was generally approved, superficial state deception was not. Participants in the hidden state condition often implicated agents other than the robot in the deception. Conclusion: This study provides some of the first evidence for how people perceive and evaluate the deceptiveness of robot deception behavior types. This study found that people people distinguish among the three types of deception behaviors and see them as differently deceptive and approve of them differently. They also see at least the hidden state deception as stemming more from the designers than the robot itself.

7.
Med Biol Eng Comput ; 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39294549

RESUMO

The motion accuracy, compliance, and control smoothness for the surgical robot are of great importance to improve the safety of human-robot interaction. However, the end effector that interacts with soft tissue during surgery affects the dynamics of the robot. The control performance of the controller may be decreased if the changing dynamics are not identified and updated in time. This paper proposes a robust impedance controller for the redundant remote center of motion manipulator influenced by external disturbances, including external torque, uncertainties, and unmodeled terms in the dynamics. To achieve the desired impedance, a continuously switching sliding manifold is proposed. When the sliding manifold is driven to zero, the motion error will converge to a bounded region. This can overcome the adverse effects of external disturbances while guaranteeing motion accuracy and compliance. Chattering of the sliding mode control is alleviated through the formulated continuously switching sliding manifold and integrated nonlinear disturbance observer. Simulations and experiments demonstrate that the proposed controller has excellent motion accuracy, compliance, and control smoothness. This provides potential application prospects for the redundant surgical robot to guarantee safe human-robot interaction.

8.
JMIR Hum Factors ; 11: e58046, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39264334

RESUMO

Background: Robotic technologies present challenges to health care professionals and are therefore rarely used. Barriers such as lack of controllability and adaptability and complex control functions affect the human-robot relationship. In addition to educational opportunities, the possibility of individual adaptation can improve the usability and practical implementation of robotics. Previous work has focused on developments from a technology-centered perspective and has included user interests too late in the process. Objective: This study addresses the following research question: What cocreative research approaches are used in the field of nursing robotics to improve the usability, intended use, and goal-directed application of robotic developments for nurses and to support the nursing process? Methods: This scoping review provides an overview of the topic and the research activities taking place within it. Five databases and the reference lists of the identified publications were searched for studies without further restrictions. Studies were included if they developed and evaluated interaction and control platforms for robotic systems in health care in a cocreative way with end users. Results: The search resulted in 419 hits, of which 3 publications were included. All publications were feasibility or user studies that were mainly carried out in the European Union. The 3 interaction and control platforms presented were all prototypes and not commercially available. In addition to those in need of care, all studies also included family carers and health care professionals. Conclusions: Robotic interaction and control platforms in health care are rarely, if ever, developed and evaluated with feasibility or user studies that include prototypes and end users. While the involvement of end users is crucial, this review emphasizes that all stakeholders, including health care professionals, should participate in the development process to ensure a holistic understanding of application needs and a focus on user experiences and practical health care needs. It is emphasized that the active involvement of end users in the development process is critical to effectively meeting the needs of the target group.


Assuntos
Robótica , Humanos , Robótica/métodos , Atenção à Saúde
9.
J Neurosci Methods ; 412: 110280, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39271023

RESUMO

BACKGROUND: With the arrival of the new generation of artificial intelligence wave, new human-robot interaction technologies continue to emerge. Brain-computer interface (BCI) offers a pathway for state monitoring and interaction control between human and robot. However, the unstable mental state reduce the accuracy of human brain intent decoding, and consequently affects the precision of BCI control. NEW METHODS: This paper proposes a hybrid BCI-based shared control (HB-SC) method for brain-controlled robot navigation. Hybrid BCI fuses electroencephalogram (EEG) and electromyography (EMG) for mental state monitoring and interactive control to output human perception and decision. The shared control based on multi-sensory fusion integrates the special obstacle information perceived by humans with the regular environmental information perceived by the robot. In this process, valid BCI commands are screened by mental state assessment and output to a layered costmap for fusion. RESULTS: Eight subjects participated in the navigation experiment with dynamically changing mental state levels to validate the effects of a hybrid brain-computer interface through two shared control modes. The results show that the proposed HB-SC reduces collisions by 37.50 %, improves the success rate of traversing obstacles by 25.00 %, and the navigation trajectory is more consistent with expectations. CONCLUSIONS: The HB-SC method can dynamically and intelligently adjust command output according to different brain states, helping to reduce errors made by subjects in a unstable mental state, thereby greatly enhancing the system's safety.

10.
Sci Rep ; 14(1): 19751, 2024 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-39231986

RESUMO

This research explores prospective determinants of trust in the recommendations of artificial agents regarding decisions to kill, using a novel visual challenge paradigm simulating threat-identification (enemy combatants vs. civilians) under uncertainty. In Experiment 1, we compared trust in the advice of a physically embodied versus screen-mediated anthropomorphic robot, observing no effects of embodiment; in Experiment 2, we manipulated the relative anthropomorphism of virtual robots, observing modestly greater trust in the most anthropomorphic agent relative to the least. Across studies, when any version of the agent randomly disagreed, participants reversed their threat-identifications and decisions to kill in the majority of cases, substantially degrading their initial performance. Participants' subjective confidence in their decisions tracked whether the agent (dis)agreed, while both decision-reversals and confidence were moderated by appraisals of the agent's intelligence. The overall findings indicate a strong propensity to overtrust unreliable AI in life-or-death decisions made under uncertainty.


Assuntos
Inteligência Artificial , Robótica , Confiança , Humanos , Robótica/métodos , Masculino , Feminino , Adulto , Tomada de Decisões , Adulto Jovem , Incerteza
11.
Psicol Reflex Crit ; 37(1): 40, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39325246

RESUMO

BACKGROUND: With the fast-paced advancements of robot technology, human-robot interaction (HRI) has become increasingly popular and complex, and self-efficacy in HRI has received extensive attention. Despite its popularity, this topic remains understudied in China. OBJECTIVE: In order to provide a psychometrically sound instrument in China, this study aimed to translate and validate the Self-Efficacy in Human-Robot Interaction Scale (SE-HRI) in two Chinese adult samples (N1 = 300, N2 = 500). METHODS: The data was analyzed by SPSS 26.0 and Amos 24.0. Item analysis and exploratory factor analysis were conducted using Sample 1 data. Confirmatory factor analysis, criterion-related validity analysis, and reliability analysis were then performed using Sample 2 data. RESULTS: The results revealed that the Chinese SE-HRI scale consisted of 13 items in a two-factor model, suggesting a good model fit. Moreover, general self-efficacy and willingness to accept the use of artificial intelligence (AI) were both positively correlated with self-efficacy in HRI, while negative attitudes toward robots showed an inverse correlation, proving the Chinese SE-HRI scale exhibited excellent criterion-related validity. CONCLUSION: The Chinese SE-HRI scale is a reliable assessment tool for evaluating self-efficacy in HRI in China. The study discussed implications and limitations, and suggested future directions.

12.
Biomimetics (Basel) ; 9(9)2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39329554

RESUMO

Traditional myoelectric controls of trans-humeral prostheses fail to provide intuitive coordination of the necessary degrees of freedom. We previously showed that by using artificial neural network predictions to reconstruct distal joints, based on the shoulder posture and movement goals (i.e., position and orientation of the targeted object), participants were able to position and orient an avatar hand to grasp objects with natural arm performances. However, this control involved rapid and unintended prosthesis movements at each modification of the movement goal, impractical for real-life scenarios. Here, we eliminate this abrupt change using novel methods based on an angular trajectory, determined from the speed of stump movement and the gap between the current and the 'goal' distal configurations. These new controls are tested offline and online (i.e., involving participants-in-the-loop) and compared to performances obtained with a natural control. Despite a slight increase in movement time, the new controls allowed twelve valid participants and six participants with trans-humeral limb loss to reach objects at various positions and orientations without prior training. Furthermore, no usability or workload degradation was perceived by participants with upper limb disabilities. The good performances achieved highlight the potential acceptability and effectiveness of those controls for our target population.

13.
Biomimetics (Basel) ; 9(9)2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39329588

RESUMO

Depictions of robots as romantic partners for humans are frequent in popular culture. As robots become part of human society, they will gradually assume the role of partners for humans whenever necessary, as assistants, collaborators, or companions. Companion robots are supposed to provide social contact to those who would not have it otherwise. These companion robots are usually not designed to fulfill one of the most important human needs: the one for romantic and intimate contact. Human-robot intimacy remains a vastly unexplored territory. In this article, we review the state-of-the-art research in intimate robotics. We discuss major issues limiting the acceptance of robots as intimate partners, the public perception of robots in intimate roles, and the possible influence of cross-cultural differences in these domains. We also discuss the possible negative effects human-robot intimacy may have on human-human contact. Most importantly, we propose a new term "intimate companion robots" to reduce the negative connotations of the other terms that have been used so far and improve the social perception of research in this domain. With this article, we provide an outlook on prospects for the development of intimate companion robots, considering the specific context of their use.

14.
Artigo em Inglês | MEDLINE | ID: mdl-39304590

RESUMO

PURPOSE: The search for heart components in robotic transthoracic echocardiography is a time-consuming process. This paper proposes an optimized robotic navigation system for heart components using deep reinforcement learning to achieve an efficient and effective search technique for heart components. METHOD: The proposed method introduces (i) an optimized search behavior generation algorithm that avoids multiple local solutions and searches for the optimal solution and (ii) an optimized path generation algorithm that minimizes the search path, thereby realizing short search times. RESULTS: The mitral valve search with the proposed method reaches the optimal solution with a probability of 74.4%, the mitral valve confidence loss rate when the local solution stops is 16.3% on average, and the inspection time with the generated path is 48.6 s on average, which is 56.6% of the time cost of the conventional method. CONCLUSION: The results indicate that the proposed method improves the search efficiency, and the optimal location can be searched in many cases with the proposed method, and the loss rate of the confidence in the mitral valve was low even when a local solution rather than the optimal solution was reached. It is suggested that the proposed method enables accurate and quick robotic navigation to find heart components.

15.
Behav Sci (Basel) ; 14(9)2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39336069

RESUMO

We explore telerobotics as a novel form of intergroup communication. In this form, remotely operated robots facilitate embodied and situated intergroup contact between groups in conflict over long distances, potentially reducing prejudice and promoting positive social change. Based on previous conceptual frameworks and design hypotheses, we conducted a survey on the acceptance and preferences of the telerobotic medium in Israel and Palestine. We analyzed the responses using a mixed-method approach. The results shed light on differences in attitudes between the groups and design considerations for telerobots when used for intergroup contact. This study serves as a foundation for the implementation of a novel method of technology-enhanced conflict resolution in the field.

16.
Front Robot AI ; 11: 1403679, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39188572

RESUMO

In this paper, we discuss the potential contribution of affective touch to the user experience and robot performance in human-robot interaction, with an in-depth look into upper-limb prosthesis use as a well-suited example. Research on providing haptic feedback in human-robot interaction has worked to relay discriminative information during functional activities of daily living, like grasping a cup of tea. However, this approach neglects to recognize the affective information our bodies give and receive during social activities of daily living, like shaking hands. The discussion covers the emotional dimensions of affective touch and its role in conveying distinct emotions. In this work, we provide a human needs-centered approach to human-robot interaction design and argue for an equal emphasis to be placed on providing affective haptic feedback channels to meet the social tactile needs and interactions of human agents. We suggest incorporating affective touch to enhance user experience when interacting with and through semi-autonomous systems such as prosthetic limbs, particularly in fostering trust. Real-time analysis of trust as a dynamic phenomenon can pave the way towards adaptive shared autonomy strategies and consequently enhance the acceptance of prosthetic limbs. Here we highlight certain feasibility considerations, emphasizing practical designs and multi-sensory approaches for the effective implementation of affective touch interfaces.

17.
Front Psychol ; 15: 1391832, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39188868

RESUMO

Introduction: Empathy can be described as the ability to adopt another person's perspective and comprehend, feel, share, and respond to their emotional experiences. Empathy plays an important role in these relationships and is constructed in human-robot interaction (HRI). This systematic review focuses on studies investigating human empathy toward robots. We intend to define empathy as the cognitive capacity of humans to perceive robots as equipped with emotional and psychological states. Methods: We conducted a systematic search of peer-reviewed articles using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. We searched Scopus, PubMed, Web of Science, and Embase databases. All articles were reviewed based on the titles, abstracts, and full texts by two investigators (EM and CS) who independently performed data collection. The researchers read the full-text articles deemed suitable for the study, and in cases of disagreement regarding the inclusion and exclusion criteria, the final decision was made by a third researcher (VLB). Results: The electronic search identified 484 articles. After reading the full texts of the selected publications and applying the predefined inclusion criteria, we selected 11 articles that met our inclusion criteria. Robots that could identify and respond appropriately to the emotional states of humans seemed to evoke empathy. In addition, empathy tended to grow more when the robots exhibited anthropomorphic traits. Discussion: Humanoid robots can be programmed to understand and react to human emotions and simulate empathetic responses; however, they are not endowed with the same innate capacity for empathy as humans.

18.
Sensors (Basel) ; 24(16)2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39204948

RESUMO

This study evaluates an innovative control approach to assistive robotics by integrating brain-computer interface (BCI) technology and eye tracking into a shared control system for a mobile augmented reality user interface. Aimed at enhancing the autonomy of individuals with physical disabilities, particularly those with impaired motor function due to conditions such as stroke, the system utilizes BCI to interpret user intentions from electroencephalography signals and eye tracking to identify the object of focus, thus refining control commands. This integration seeks to create a more intuitive and responsive assistive robot control strategy. The real-world usability was evaluated, demonstrating significant potential to improve autonomy for individuals with severe motor impairments. The control system was compared with an eye-tracking-based alternative to identify areas needing improvement. Although BCI achieved an acceptable success rate of 0.83 in the final phase, eye tracking was more effective with a perfect success rate and consistently lower completion times (p<0.001). The user experience responses favored eye tracking in 11 out of 26 questions, with no significant differences in the remaining questions, and subjective fatigue was higher with BCI use (p=0.04). While BCI performance lagged behind eye tracking, the user evaluation supports the validity of our control strategy, showing that it could be deployed in real-world conditions and suggesting a pathway for further advancements.


Assuntos
Realidade Aumentada , Interfaces Cérebro-Computador , Eletroencefalografia , Tecnologia de Rastreamento Ocular , Robótica , Interface Usuário-Computador , Humanos , Robótica/métodos , Robótica/instrumentação , Eletroencefalografia/métodos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Adulto Jovem , Movimentos Oculares/fisiologia
19.
Sensors (Basel) ; 24(16)2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39205050

RESUMO

Using lower limb exoskeletons provides potential advantages in terms of productivity and safety associated with reduced stress. However, complex issues in human-robot interactions are still open, such as the physiological effects of exoskeletons and the impact on the user's subjective experience. In this work, an innovative exoskeleton, the Wearable Walker, is assessed using the EXPERIENCE benchmarking protocol from the EUROBENCH project. The Wearable Walker is a lower-limb exoskeleton that enhances human abilities, such as carrying loads. The device uses a unique control approach called Blend Control that provides smooth assistance torques. It operates two models simultaneously, one in the case in which the left foot is grounded and another for the grounded right foot. These models generate assistive torques combined to provide continuous and smooth overall assistance, preventing any abrupt changes in torque due to model switching. The EXPERIENCE protocol consists of walking on flat ground while gathering physiological signals, such as heart rate, its variability, respiration rate, and galvanic skin response, and completing a questionnaire. The test was performed with five healthy subjects. The scope of the present study is twofold: to evaluate the specific exoskeleton and its current control system to gain insight into possible improvements and to present a case study for a formal and replicable benchmarking of wearable robots.


Assuntos
Exoesqueleto Energizado , Extremidade Inferior , Caminhada , Dispositivos Eletrônicos Vestíveis , Humanos , Extremidade Inferior/fisiologia , Caminhada/fisiologia , Masculino , Adulto , Robótica/instrumentação , Feminino , Andadores , Desenho de Equipamento , Torque
20.
Med Biol Eng Comput ; 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39153171

RESUMO

Robot-assisted rehabilitation and training systems are utilized to improve the functional recovery of individuals with mobility limitations. These systems offer structured rehabilitation through precise human-robot interaction, outperforming traditional physical therapy by delivering advantages such as targeted muscle recovery, optimization of walking patterns, and automated training routines tailored to the user's objectives and musculoskeletal attributes. In our research, we propose the development of a walking simulator that considers user-specific musculoskeletal information to replicate natural walking dynamics, accounting for factors like joint angles, muscular forces, internal user-specific constraints, and external environmental factors. The integration of these factors into robot-assisted training can provide a more realistic rehabilitation environment and serve as a foundation for achieving natural bipedal locomotion. Our research team has developed a robot-assisted training platform (RATP) that generates gait training sets based on user-specific internal and external constraints by incorporating a genetic algorithm (GA). We utilize the Lagrangian multipliers to accommodate requirements from the rehabilitation field to instantly reshape the gait patterns while maintaining their overall characteristics, without an additional gait pattern search process. Depending on the patient's rehabilitation progress, there are times when it is necessary to reorganize the training session by changing training conditions such as terrain conditions, walking speed, and joint range of motion. The proposed method allows gait rehabilitation to be performed while stably satisfying ground contact constraints, even after modifying the training parameters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA