Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Front Oncol ; 14: 1390221, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38957325

RESUMO

Introduction: Lynch syndrome (LS) is an inherited cancer predisposition syndrome characterized by a high risk of colorectal and extracolonic tumors. Germline pathogenic variants (GPV) in the PMS2 gene are associated with <15% of all cases. The PMS2CL pseudogene presents high homology with PMS2, challenging molecular diagnosis by next-generation sequencing (NGS). Due to the high methodological complexity required to distinguish variants between PMS2 and PMS2CL, most laboratories do not clearly report the origin of this molecular finding. Objective: The aim of this study was to confirm the GPVs detected by NGS in regions of high homology segments of the PMS2 gene in a Brazilian sample. Methods: An orthogonal and gold standard long-range PCR (LR-PCR) methodology to separate variants detected in the PMS2 gene from those detected in the pseudogene. Results: A total of 74 samples with a PMS2 GPV detected by NGS in exons with high homology with PMS2CL pseudogene were evaluated. The most common was NM_000535.6:c.2182_2184delinsG, which was previously described as deleterious mutation in a study of African-American patients with LS and has been widely reported by laboratories as a pathogenic variant associated with the LS phenotype. Of all GPVs identified, only 6.8% were confirmed by LR-PCR. Conversely, more than 90% of GPV were not confirmed after LR-PCR, and the diagnosis of LS was ruled out by molecular mechanisms associated with PMS2. Conclusion: In conclusion, the use of LR-PCR was demonstrated to be a reliable approach for accurate molecular analysis of PMS2 variants in segments with high homology with PMS2CL. We highlight that our laboratory is a pioneer in routine diagnostic complementation of the PMS2 gene in Brazil, directly contributing to a more assertive molecular diagnosis and adequate genetic counseling for these patients and their families.

2.
Int J Hematol ; 120(2): 179-185, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38801563

RESUMO

Congenital antithrombin (AT) or serpin C1 deficiency, caused by a SERPINC1 abnormality, is a high-risk factor for venous thrombosis. SERPINC1 is prone to genetic rearrangement, because it contains numerous Alu elements. In this study, a Japanese patient who developed deep vein thrombosis during pregnancy and exhibited low AT activity underwent SERPINC1 gene analysis using routine methods: long-range polymerase chain reaction (PCR) and real-time PCR. Sequencing using long-range PCR products revealed no pathological variants in SERPINC1 exons or exon-intron junctions, and all the identified variants were homozygous, suggesting a deletion in one SERPINC1 allele. Copy number quantification for each SERPINC1 exon using real-time PCR revealed half the number of exon 1 and 2 copies compared with controls. Moreover, a deletion region was deduced by quantifying the 5'-upstream region copy number of SERPINC1 for each constant region. Direct long-range PCR sequencing with primers for the 5'-end of each presumed deletion region revealed a large Alu-mediated deletion (∼13 kb) involving SERPINC1 exons 1 and 2. Thus, a large deletion was identified in SERPINC1 using conventional PCR methods.


Assuntos
Deficiência de Antitrombina III , Antitrombina III , Reação em Cadeia da Polimerase em Tempo Real , Deleção de Sequência , Humanos , Feminino , Antitrombina III/genética , Deficiência de Antitrombina III/genética , Adulto , Gravidez , Éxons/genética , Trombose Venosa/genética , Elementos Alu/genética , Deleção de Genes
3.
Front Bioeng Biotechnol ; 12: 1304951, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38440325

RESUMO

Chinese hamster ovary (CHO) cells have a long history in the biopharmaceutical industry and currently produce the vast majority of recombinant therapeutic proteins. A key step in controlling the process and product consistency is the development of a producer cell line derived from a single cell clone. However, it is recognized that genetic and phenotypic heterogeneity between individual cells in a clonal CHO population tends to arise over time. Previous bulk analysis of CHO cell populations revealed considerable variation within the mtDNA sequence (heteroplasmy), which could have implications for the performance of the cell line. By analyzing the heteroplasmy of single cells within the same population, this heterogeneity can be characterized with greater resolution. Such analysis may identify heterogeneity in the mitochondrial genome, which impacts the overall phenotypic performance of a producer cell population, and potentially reveal routes for genetic engineering. A critical first step is the development of robust experimental and computational methods to enable single cell mtDNA sequencing (termed scmtDNAseq). Here, we present a protocol from cell culture to bioinformatic analysis and provide preliminary evidence of significant mtDNA heteroplasmy across a small panel of single CHO cells.

5.
BMC Genomics ; 25(1): 189, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368357

RESUMO

BACKGROUND: CRISPR-Cas9 technology has advanced in vivo gene therapy for disorders like hemophilia A, notably through the successful targeted incorporation of the F8 gene into the Alb locus in hepatocytes, effectively curing this disorder in mice. However, thoroughly evaluating the safety and specificity of this therapy is essential. Our study introduces a novel methodology to analyze complex insertion sequences at the on-target edited locus, utilizing barcoded long-range PCR, CRISPR RNP-mediated deletion of unedited alleles, magnetic bead-based long amplicon enrichment, and nanopore sequencing. RESULTS: We identified the expected F8 insertions and various fragment combinations resulting from the in vivo linearization of the double-cut plasmid donor. Notably, our research is the first to document insertions exceeding ten kbp. We also found that a small proportion of these insertions were derived from sources other than donor plasmids, including Cas9-sgRNA plasmids, genomic DNA fragments, and LINE-1 elements. CONCLUSIONS: Our study presents a robust method for analyzing the complexity of on-target editing, particularly for in vivo long insertions, where donor template integration can be challenging. This work offers a new tool for quality control in gene editing outcomes and underscores the importance of detailed characterization of edited genomic sequences. Our findings have significant implications for enhancing the safety and effectiveness of CRISPR-Cas9 gene therapy in treating various disorders, including hemophilia A.


Assuntos
Hemofilia A , Sequenciamento por Nanoporos , Camundongos , Animais , Sistemas CRISPR-Cas , RNA Guia de Sistemas CRISPR-Cas , Hemofilia A/genética , Hemofilia A/terapia , Edição de Genes/métodos , DNA
6.
J Fish Dis ; 47(3): e13905, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38073005

RESUMO

The presence of endogenous viral elements (EVE) in the penaeid shrimp genome has been recently reported and suggested to be involved in the host recognition of viral invaders. Our previous report of a search for EVE of infectious hypodermal and haematopoietic necrosis virus (IHHNV-EVE) in the Thai Penaeus monodon whole genome sequence project (GenBank accession no. JABERT000000000) confirmed the presence of three clusters of EVE derived from IHHNV in the shrimp genome. This study aimed to compare an immunohistochemistry method (IHC) and a PCR method to detect infectious IHHNV infection in shrimp. First, specimens collected from farms were checked for IHHNV using three PCR methods; two methods were recommended by WOAH (309 and 389 methods), and a newly established long-range PCR for IHHNV (IHHNV-LA PCR) targeting almost the whole genome (>90%) of IHHNV. Among 29 specimens tested, 24 specimens were positive for WOAH methods (at least one method). Among 24 WOAH-positive specimens (WOAH+), there were 18 specimens with positive IHHNV-LA PCR method (WOAH+/LA+), six specimens with negative IHHNV-LA PCR method (WOAH+/LA-). Six specimens were negative for all methods (WOAH-/LA-). The positive signals detected by IHC method were found only in the specimens with WOAH+/LA+. The results suggest that the WOAH+/LA- specimens were not infected with IHHNV, and the positive WOAH method might result from the EVE-IHHNV. The study recommends combining the IHHNV-LA PCR method and IHC with positive PCR results from WOAH's recommended methods to confirm IHHNV infection.


Assuntos
Densovirinae , Doenças dos Peixes , Penaeidae , Animais , Reação em Cadeia da Polimerase/veterinária , Imuno-Histoquímica , Doenças dos Peixes/diagnóstico
7.
Genes (Basel) ; 14(11)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38003022

RESUMO

Advances in genetic technologies have made genetic testing more accessible than ever before. However, depending on national, regional, legal, and health insurance circumstances, testing procedures may still need to be streamlined in real-world clinical practice. In cases of autosomal recessive disease with consanguinity, the mutation locus is necessarily isodisomy because both alleles originate from a common ancestral chromosome. Based on this premise, we implemented integrated genetic diagnostic methods using SNP array screening and long range PCR-based targeted NGS in a Japanese patient with xeroderma pigmentosum (XP) under the limitation of the national health insurance system. SNP array results showed isodisomy only in XPC and ERCC4 loci. NGS, with a minimal set of long-range PCR primers, detected a homozygous frameshift mutation in XPC; NM_004628.5:c.218_219insT p.(Lys73AsnfsTer9), confirmed by Sanger sequencing, leading to a rapid diagnosis of XP group C. This shortcut strategy is applicable to all autosomal recessive diseases caused by consanguineous marriages, especially in scenarios with a moderate number of genes to test, a common occurrence in clinical genetic practice.


Assuntos
Xeroderma Pigmentoso , Humanos , Xeroderma Pigmentoso/diagnóstico , Xeroderma Pigmentoso/genética , Xeroderma Pigmentoso/epidemiologia , Consanguinidade , Sequenciamento de Nucleotídeos em Larga Escala , Reação em Cadeia da Polimerase
8.
J Pers Med ; 13(6)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37373874

RESUMO

CYP2D6 duplication has important pharmacogenomic implications. Reflex testing with long-range PCR (LR-PCR) can resolve the genotype when a duplication and alleles with differing activity scores are detected. We evaluated whether visual inspection of plots from real-time-PCR-based targeted genotyping with copy number variation (CNV) detection could reliably determine the duplicated CYP2D6 allele. Six reviewers evaluated QuantStudio OpenArray CYP2D6 genotyping results and the TaqMan Genotyper plots for seventy-three well-characterized cases with three copies of CYP2D6 and two different alleles. Reviewers blinded to the final genotype visually assessed the plots to determine the duplicated allele or opt for reflex sequencing. Reviewers achieved 100% accuracy for cases with three CYP2D6 copies that they opted to report. Reviewers did not request reflex sequencing in 49-67 (67-92%) cases (and correctly identified the duplicated allele in each case); all remaining cases (6-24) were marked by at least one reviewer for reflex sequencing. In most cases with three copies of CYP2D6, the duplicated allele can be determined using a combination of targeted genotyping using real-time PCR with CNV detection without need for reflex sequencing. In ambiguous cases and those with >3 copies, LR-PCR and Sanger sequencing may still be necessary for determination of the duplicated allele.

9.
Lab Invest ; 103(8): 100160, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37088464

RESUMO

Short-read next-generation sequencing has revolutionized our ability to identify variants underlying inherited diseases; however, it does not allow the phasing of variants to clarify their diagnostic interpretation. The advent of widespread, increasingly accurate long-read sequencing has opened up new applications not currently available through short-read next-generation sequencing. One such use is the ability to phase variants to clarify their diagnostic interpretation and to investigate the increasingly prevalent role of cis-acting variants in the pathogenesis of the inherited disease, so-called complex alleles. Complex alleles are becoming an increasingly prevalent part of the study of genes associated with inherited diseases, for example, in ABCA4-related diseases. We sought to establish a cost-effective method to phase contiguous segments of the 130-kb ABCA4 locus by long-read sequencing of overlapping amplification products. Using the comprehensively characterized CEPH sample, NA12878, we verified the accuracy and robustness of our assay. However, in-field assessment of its utility using clinical test cases was hampered by the paucity and distribution of identified variants and by PCR chimerism, particularly where the number of PCR cycles was high. Despite this, we were able to construct robust phase blocks of up to 94.9 kb, representing 73% of the ABCA4 locus. We conclude that, although haplotype analysis of variants located within discrete amplification products was robust and informative, the stitching together of larger phase blocks using overlapping single-molecule reads remained practically challenging.


Assuntos
Sequenciamento por Nanoporos , Haplótipos/genética , Alelos , Reação em Cadeia da Polimerase , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos
10.
Biomedicines ; 11(3)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36979683

RESUMO

Hearing loss is the most frequent sensorineural disorder, affecting approximately 1:1000 newborns. Hereditary forms (HHL) represent 50-60% of cases, highlighting the relevance of genetic testing in deaf patients. HHL is classified as non-syndromic (NSHL-70% of cases) or syndromic (SHL-30% of cases). In this study, a multistep and integrative approach aimed at identifying the molecular cause of HHL in 102 patients, whose GJB2 analysis already showed a negative result, is described. In NSHL patients, multiplex ligation probe amplification and long-range PCR analyses of the STRC gene solved 13 cases, while whole exome sequencing (WES) identified the genetic diagnosis in 26 additional ones, with a total detection rate of 47.6%. Concerning SHL, WES detected the molecular cause in 55% of cases. Peculiar findings are represented by the identification of four subjects displaying a dual molecular diagnosis and eight affected by non-syndromic mimics, five of them presenting Usher syndrome type 2. Overall, this study provides a detailed characterisation of the genetic causes of HHL in the Italian population. Furthermore, we highlighted the frequency of Usher syndrome type 2 carriers in the Italian population to pave the way for a more effective implementation of diagnostic and follow-up strategies for this disease.

11.
Mol Biol Rep ; 50(4): 3119-3127, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36692677

RESUMO

BACKGROUND: The filaggrin (FLG) protein, encoded by the FLG gene, is an intermediate filament-associated protein that plays a crucial role in the terminal stages of human epidermal differentiation. Loss-of-function mutations in the FLG exon 3 have been associated with skin diseases. The identification of causative mutations is challenging, due to the high sequence homology within its exon 3 (12,753 bp), which includes 10 to 12 filaggrin tandem repeats. With this study we aimed to obtain the whole FLG exon 3 sequence through PacBio technology, once 13-kb amplicons have been generated. METHODS AND RESULTS: For the preparation of SMRTbell libraries to be sequenced using PacBio technology, we focused on optimizing a 2-step long-range PCR protocol to generate 13-kb amplicons covering the whole FLG exon 3 sequence. The performance of three long-range DNA polymerases was assessed in an attempt to improve the PCR conditions required for the enzymes to function properly. We focused on optimization of the input template DNA concentration and thermocycling parameters to correctly amplify the entire FLG exon 3 sequence, minimizing non-specific amplification. CONCLUSIONS: Taken together, our findings suggested that the PrimeSTAR protocol is suitable for producing the amplicons of the 13-kb FLG whole exon 3 to prepare SMRTbell libraries. We suggest that sequencing the generated amplicons may be useful for identifying LoF variants that are causative of the patients' disorders.


Assuntos
Dermatite Atópica , Proteínas Filagrinas , Humanos , Mutação/genética , Éxons/genética , Reação em Cadeia da Polimerase
12.
Artigo em Inglês | MEDLINE | ID: mdl-35752289

RESUMO

To achieve the enormous potential of gene-editing technology in clinical therapies, one needs to evaluate both the on-target efficiency and unintended editing consequences comprehensively. However, there is a lack of a pipelined, large-scale, and economical workflow for detecting genome editing outcomes, in particular insertion or deletion of a large fragment. Here, we describe an approach for efficient and accurate detection of multiple genetic changes after CRISPR/Cas9 editing by pooled nanopore sequencing of barcoded long-range PCR products. Recognizing the high error rates of Oxford nanopore sequencing, we developed a novel pipeline to capture the barcoded sequences by grepping reads of nanopore amplicon sequencing (GREPore-seq). GREPore-seq can assess nonhomologous end-joining (NHEJ)-mediated double-stranded oligodeoxynucleotide (dsODN) insertions with comparable accuracy to Illumina next-generation sequencing (NGS). GREPore-seq also reveals a full spectrum of homology-directed repair (HDR)-mediated large gene knock-in, correlating well with the fluorescence-activated cell sorting (FACS) analysis results. Of note, we discovered low-level fragmented and full-length plasmid backbone insertion at the CRISPR cutting site. Therefore, we have established a practical workflow to evaluate various genetic changes, including quantifying insertions of short dsODNs, knock-ins of long pieces, plasmid insertions, and large fragment deletions after CRISPR editing. GREPore-seq is freely available at GitHub (https://github.com/lisiang/GREPore-seq) and the National Genomics Data Center (NGDC) BioCode (https://ngdc.cncb.ac.cn/biocode/tools/BT007293).

13.
Appl Microbiol Biotechnol ; 106(9-10): 3799-3809, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35575914

RESUMO

This study aims to study the kinetics and mechanisms of human adenovirus inactivation by electron beam. Human adenovirus type 5 (HAdV-5) was inoculated in two types of aqueous substrates (phosphate-buffered saline - PBS, domestic wastewater - WW) treated by electron beam at a dose range between 3 and 21 kGy. Samples were evaluated for virus infectivity, PCR amplification of fragments of HAdV-5 genome and abundance and antigenicity of the virion structural proteins. The maximum reduction in viral titre, in plaque-forming units (PFU) per millilitre, was about 7 and 5 log PFU/mL for e-beam irradiation at 20 kGy in PBS and 19 kGy in wastewater, respectively. Among the virion structural proteins detected, the hexon protein showed the higher radioresistance. Long (10.1 kbp) genomic DNA fragments were differently PCR amplified, denoting a substrate effect on HAdV-5 genome degradation by e-beam. The differences observed between the two substrates can be explained by the protective effect that the organic matter present in the substrate may have on viral irradiation. According to the obtained results, the decrease in viral viability/infectivity may be due to DNA damage and to protein alterations. In summary, electron beam irradiation at a dose of 13 kGy is capable of reducing HAdV-5 viral titres by more than 99.99% (4 log PFU/mL) in both substrates assayed, indicating that this type of technology is effective for viral wastewater disinfection and may be used as a tertiary treatment in water treatment plants. KEY POINTS: • The substrate in which the virus is suspended has an impact on its sensitivity to e-beam treatment. • E-beam irradiation at 13 kGy is capable of reducing by 4 Log PFU/mL the HAdV-5 viral titre. • The decrease in viral viability/infectivity may be due to DNA damage and to protein alterations.


Assuntos
Adenovírus Humanos , Purificação da Água , Adenovírus Humanos/genética , Desinfecção/métodos , Humanos , Viabilidade Microbiana , Águas Residuárias
14.
Front Allergy ; 3: 836465, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35386643

RESUMO

Background: Hereditary angioedema (HAE) due to C1-inhibitor (C1-INH) deficiency (C1-INH-HAE) is a rare autosomal dominant disorder, characterized by recurrent, unpredictable edematous symptoms involving subcutaneous, and/or submucosal tissue. C1-INH-HAE may be caused by more than 700 different mutations in the gene encoding C1-INH (SERPING1) that may lead to decreased protein synthesis or to functional deficiency. Methods: Concentrations of C1-INH, C4, C1q, and anti-C1-INH antibodies, as well as functional C1-INH activity were determined in subjects suffering from edematous symptoms and admitted to the Hungarian Angioedema Center of Reference and Excellence. In those patients, who were diagnosed with C1-INH-HAE based on the complement measurements, SERPING1 was screened by bidirectional sequencing following PCR amplification and multiplex ligation-dependent probe amplification. For detecting large deletions, long-range PCRs covering the entire SERPING1 gene by targeting 2-7 kb long regions were applied. Results: Altogether 197 individuals with C1-INH deficiency belonging to 68 families were identified. By applying Sanger sequencing or copy number determination of SERPING1 exons, 48 different mutations were detected in 66/68 families: 5 large and 15 small insertions/deletions/delins, 16 missense, 6 nonsense, and 6 intronic splice site mutations. Two novel variations (p.Tyr199Ser [c.596A>C] and the duplication of exon 7) were shown to cosegregate with deficient C1-inhibitor level and activity, while two other variations were detected in single patients (c.797_800delinsCTTGGAGCTCAAGAACTTGGAGCT and c.812dup). A series of long PCRs was applied in the remaining 2 families without an identified mutation and a new, 2606 bp long deletion including the last 91 bp of exon 6 (c.939_1029+2515del) was identified in all affected members of one pedigree. In the remaining one family, a deep intronic SERPING1 variation (c.1029+384A>G) was detected by a targeted next-generation sequencing panel as reported previously. Conclusions: Sequencing and copy number determination of SERPING1 exons uncover most pathogenic variants in C1-INH-HAE patients, and further methods are worth to be applied in cases with unrevealed genetic background. Since knowledge of the genetic background may support the establishment of the correct and early diagnosis of C1-INH-HAE, identification of causative mutations and reporting data supporting the interpretation on the pathogenicity of these variants is of utmost importance.

15.
HLA ; 99(6): 590-606, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35322605

RESUMO

HLA sequence-based DNA typing (SBT) by long-range PCR amplification (LR PCR) and next-generation sequencing (NGS) is a high-throughput DNA sequencing method (LR-NGS-SBT) for the efficient and sensitive detection of novel and null HLA alleles to the field-4 level of allelic resolution without phase ambiguity. However, the accuracy and reliability of the HLA typing results using buccal cells (BCs) and saliva as genetic source materials for the LR-NGS-SBT method are dependent largely on the quality of the extracted genomic DNA (gDNA) because a large degree of gDNA fragmentation can result in insufficient PCR amplification with the incorrect assignment of HLA alleles because of allele dropouts. In this study, we developed a new cost-efficient swab storage gel (SSG) for wet swab collection of BCs (BC-SSG) and evaluated its usefulness by performing different DNA analytical parameters including LR-NGS-SBT to compare the quality and quantity of gDNA extracted from BCs (in SSG or air dried), blood and saliva of 30 subjects. The BC-SSG samples after 5 days of storage revealed qualitative and quantitative DNA values equivalent to that of blood and/or saliva and better than swabs that were only air-dried (BC-nSSG). Moreover, all the gDNA extracted from blood, saliva and BC-SSG samples were HLA-typed successfully to an equivalent total of 408 alleles for each sample type. Therefore, the application of BC-SSG collection media for LR-NGS-SBT has benefits over BC dried samples (dry swabs) such as reducing retesting and the number of untestable BC samples because of insufficient DNA amplification.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Mucosa Bucal , Alelos , DNA/genética , Antígenos HLA/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Teste de Histocompatibilidade/métodos , Humanos , Reprodutibilidade dos Testes , Análise de Sequência de DNA
16.
J Virol Methods ; 301: 114464, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35032481

RESUMO

The diseases caused by capripoxviruses (CaPVs) are of major economic concern in sheep, goat and cattle as they are inexorably spreading into non-endemic regions. As CaPV strains are serologically indistinguishable and genetically highly homologous, typing closely related strains can only be achieved by whole genome sequencing. Unfortunately the number of publicly available genomes remains low as most sequencing methods rely on virus isolation. Therefore, we developed a robust, cost-effective and widely applicable method that allows to generate (nearly) complete CaPV genomes directly from clinical samples or commercial vaccine batches. A set of pan-CaPVs long-range PCRs spanning the entire genome was designed to generate PCR amplicons that can be sequenced on commonly used high-throughput sequencing platforms: MiSeq (Illumina), RSII (PacBio) and MinION (Oxford Nanopore Technologies). The robustness of the LR-PCR strategy was evaluated for all 3 members of CaPV directly from a variety of samples, including clinical samples (N = 7), vaccine batches (N = 6), and virus isolates (N = 2). The sequencing method described here allows to reconstruct (nearly) complete CaPV genomes in less than a week and will aid researchers studying closely-related CaPV strains worldwide.


Assuntos
Capripoxvirus , Doenças dos Ovinos , Animais , Capripoxvirus/genética , Bovinos , Análise Custo-Benefício , Sequenciamento de Nucleotídeos em Larga Escala , Ovinos , Sequenciamento Completo do Genoma
17.
Front Neurol ; 12: 736253, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34956042

RESUMO

Background: Patients with suspected genetic ataxia are often tested for Friedreich's ataxia (FRDA) and/or a variety of spinocerebellar ataxias (SCAs). FRDA can present with atypical, late-onset forms and so may be missed in the diagnostic process. We aimed to determine FRDA-positive subjects among two cohorts of patients referred to a specialist ataxia centre either for FRDA or SCA testing to determine the proportion of FRDA cases missed in the diagnostic screening process. Methods: 2000 SCA-negative ataxia patients, not previously referred for FRDA testing (group A), were tested for FRDA expansions and mutations. This group was compared with 1768 ataxia patients who had been previously referred for FRDA testing (group B) and were therefore more likely to have a typical presentation. The phenotypes of positive cases were assessed through review of the clinical case notes. Results: Three patients (0.2%) in group A had the FRDA expansion on both alleles, compared with 207 patients (11.7%) in group B. The heterozygous carrier rate across both cohorts was of 41 out of 3,768 cases (1.1%). The size of the expansions in the three FRDA-positive cases in group A was small, and their presentation atypical with late-onset. Conclusions: This study demonstrates that FRDA is very rare among patients who were referred purely for SCA testing without the clinical suspicion of FRDA. Such cases should be referred to specialist ataxia centres for more extensive testing to improve patient management and outcomes.

18.
Mitochondrion ; 61: 179-187, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34728429

RESUMO

The integrity of mitochondrial DNA (mtDNA) isolated from solid tissues is critical for analyses such as long-range PCR, but is typically assessed under conditions that fail to provide information on the individual mtDNA strands. Using denaturing gel electrophoresis, we show that commonly-used isolation procedures generate mtDNA containing several single-strand breaks per strand. Through systematic comparison of DNA isolation methods, we identify a procedure yielding the highest integrity of mtDNA that we demonstrate displays improved performance in downstream assays. Our results highlight the importance of isolation method choice, and serve as a resource to researchers requiring high-quality mtDNA from solid tissues.


Assuntos
DNA Mitocondrial/isolamento & purificação , Mitocôndrias/genética , Envelhecimento , Animais , Quebras de DNA de Cadeia Simples , Variações do Número de Cópias de DNA , Camundongos , Camundongos Endogâmicos C57BL , Proteína 1 com Domínio SAM e Domínio HD/genética , Proteína 1 com Domínio SAM e Domínio HD/metabolismo
19.
Curr Issues Mol Biol ; 43(2): 782-801, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34449562

RESUMO

Elaborate analyses of the status of gene mutations in neurofibromatosis type 1 (NF1) are still difficult nowadays due to the large gene sizes, broad mutation spectrum, and the various effects of mutations on mRNA splicing. These problems cannot be solved simply by sequencing the entire coding region using next-generation sequencing (NGS). We recently developed a new strategy, named combined long amplicon sequencing (CoLAS), which is a method for simultaneously analysing the whole genomic DNA region and, also, the full-length cDNA of the disease-causative gene with long-range PCR-based NGS. In this study, CoLAS was specifically arranged for NF1 genetic analysis, then applied to 20 patients (five previously reported and 15 newly recruited patients, including suspicious cases) for optimising the method and to verify its efficacy and benefits. Among new cases, CoLAS detected not only 10 mutations, including three unreported mutations and one mosaic mutation, but also various splicing abnormalities and allelic expression ratios quantitatively. In addition, heterozygous mapping by polymorphisms, including introns, showed copy number monitoring of the entire NF1 gene region was possible in the majority of patients tested. Moreover, it was shown that, when a chromosomal level microdeletion was suspected from heterozygous mapping, it could be detected directly by breakpoint-specific long PCR. In conclusion, CoLAS not simply detect the causative mutation but accurately elucidated the entire structure of the NF1 gene, its mRNA expression, and also the splicing status, which reinforces its high usefulness in the gene analysis of NF1.


Assuntos
Biomarcadores Tumorais/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mutação , Neurofibromatose 1/genética , Alelos , Biomarcadores Tumorais/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala/normas , Humanos , Neurofibromatose 1/metabolismo , Neurofibromatose 1/patologia , Projetos Piloto , Reação em Cadeia da Polimerase/métodos , Splicing de RNA
20.
Front Immunol ; 12: 666273, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34177904

RESUMO

Background: During the last decade, remarkable progress with massive sequencing has been made in the identification of disease-associated genes for AIDs using next-generation sequencing technologies (NGS). An international group of experts described the ideal genetic screening method which should give information about SNVs, InDels, Copy Number Variations (CNVs), GC rich regions. We aimed to develop and validate a molecular diagnostic method in conjunction with the NGS platform as an inexpensive, extended and uniform coverage and fast screening tool which consists of nine genes known to be associated with various AIDs. Methods: For the validation of basic and expanded panels, long-range multiplex models were setup on healthy samples without any known variations for MEFV, MVK, TNFRSF1A, NLRP3, PSTPIP1, IL1RN, NOD2, NLRP12 and LPIN2 genes. Patients with AIDs who had already known causative variants in these genes were sequenced for analytical validation. As a last step, multiplex models were validated on patients with pre-diagnosis of AIDs. All sequencing steps were performed on the Illumina NGS platform. Validity steps included the selection of related candidate genes, primer design, development of screening methods, validation and verification of the product. The GDPE (Gentera) bioinformatics pipeline was followed. Results: Although there was no nonsynonymous variation in 21 healthy samples, 107 synonymous variant alleles and some intronic and UTR variants were detected. In 10 patients who underwent analytical validation, besides the 11 known nonsynonymous variant alleles, 11 additional nonsynonymous variant alleles and a total of 81 synonymous variants were found. In the clinical validation phase, 46 patients sequenced with multiplex panels, genetic and clinical findings were combined for diagnosis. Conclusion: In this study, we describe the development and validation of an NGS-based multiplex array enabling the "long-amplicon" approach for targeted sequencing of nine genes associated with common AIDs. This screening tool is less expensive and more comprehensive compared to other methods and more informative than traditional sequencing. The proposed panel offers advantages to WES or hybridization probe equivalents in terms of CNV analysis, high sensitivity and uniformity, GC-rich region sequencing, InDel detection and intron covering.


Assuntos
Testes Genéticos/métodos , Doenças Hereditárias Autoinflamatórias/diagnóstico , Alelos , Genótipo , Doenças Hereditárias Autoinflamatórias/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Reação em Cadeia da Polimerase Multiplex , Mutação , Reprodutibilidade dos Testes , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...