Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 774
Filtrar
1.
Int J Biol Macromol ; : 135385, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39245123

RESUMO

The present work aimed to investigate the effect of film-forming solution pH on characteristics of chitosan (CH) - Piper betel L. leaf extract (PBe) coating films and their potential applications in mango preservation. The coating films were fabricated from CH-PBe solutions in the pH range of 3-5 using a solvent evaporation technique. The analysis results (DSC and FTIR) demonstrate higher miscibility, better compatibility, and tighter intermolecular interactions between CH and active compounds in the film matrix prepared at low pH. The mechanical and barrier properties of the CH-PBe film significantly decreased with increasing pH value. Varying the film-forming pH insignificantly affected the antioxidant activity and antibacterial inhibition against Staphylococcus aureus (Gram-positive) of the resultant films. However, Escherichia coli (Gram-negative) was less vulnerable to the blend film prepared at the higher pH medium. The coating solution at pH 4 proved suitable for preserving 'Tu Quy' mangoes, according to the observation of color changes, accumulated decay rate, respiration rate, ripening index, and other related factors. The findings of this work reveal the importance of pH control in producing CH-PBe coating films for mango preservation and provide more insights into pH-affected interactions between CH matrix and polyphenols in PBe.

2.
Food Chem ; 463(Pt 1): 141093, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39236393

RESUMO

High susceptibility of mangoes to low temperature leads to ripening failure that restricts the marketability of products. This study investigated the effect of methyl jasmonate (MeJA) on ripening disorder and mechanism involved in mangoes during refrigeration. Results showed that 50 µM MeJA ameliorated ripening disorder, as indicated by accelerated advancement of ripening-related parameters. Transcriptome analysis revealed that 17,414 significantly differentially expressed genes were mainly enriched in ethylene synthesis, cell wall degradation, starch degradation and sugar transport. Moreover, 8 AP2/ERF transcription factors and 12 ripening-related genes were characterized via qRT-PCR. Afterwards, through the analysis of transcription factor binding sites and cis-acting elements, a regulatory network of ERFs mediated alleviation of ripening disorder conferred by MeJA was constructed. Finally, the interactions between MiERFs and the promoters of target genes were verified by yeast one-hybrid assay. Our findings provide a theoretical basis for improving cold tolerance via counteracting ripening disorder in mangoes.

3.
Plant Sci ; : 112242, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39244094

RESUMO

Gibberellic acids (GAs) are a group of endogenous phytohormones that play important roles in plant growth and development. SLENDER RICE (SLR) serves as a vital component of the DELLA gene family, which plays an irreplaceable role in regulating plant flowering and height, as well as stress responses. SLR gene has not been reported in mango, and its function is unknown. In present study, two DELLA subfamily genes MiSLR1 and MiSLR2 were identified from mango. MiSLR1 and MiSLR2 were highly expressed in the stems of the juvenile stage, but were expressed at a low level in flower buds and flowers. Gibberellin treatment could up-regulate the expression of MiSLR1 and MiSLR2 genes, but gibberellin biosynthesis inhibitor prohexadione-calcium (Pro-Ca) and paclobutrazol (PAC) treatments significantly down-regulated the expression of MiSLR1, while MiSLR2 was up-regulated. The expression levels of MiSLR1 and MiSLR2 were up-regulated under both salt and drought treatments. Overexpression of MiSLR1 and MiSLR2 genes significantly resulted early flowering in transgenic Arabidopsis and significantly up-regulated the expression levels of endogenous flower-related genes, such as SUPPRESSOR OF CONSTANS1 (SOC1), APETALA1 (AP1), and FRUITFULL (FUL). Interestingly, MiSLR1 significantly reduced the height of transgenic plants, while MiSLR2 gene increased. Overexpression of MiSLR1 and MiSLR2 increased seed germination rate, root length and survival rate of transgenic plants under salt and drought stress. Physiological and biochemical detection showed that the contents of proline (Pro) and superoxide dismutase (SOD) were significantly increased, while the contents of malondialdehyde (MDA) and H2O2 were significantly decreased. Additionally, protein interaction analysis revealed that MiSLR1 and MiSLR2 interacted with several flowering-related and GA-related proteins. The interaction between MiSLR with MiGF14 and MiSOC1 proteins was found for the first time. Taken together, the data showed that MiSLR1 and MiSLR2 in transgenic Arabidopsis both regulated the flowering time and plant height, while also acting as positive regulators of abiotic stress responses.

4.
Heliyon ; 10(16): e35808, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39247336

RESUMO

This work aimed to determine the optimum conditions for dehydration impregnation by immersion (D2I) and by intermittent immersion (D3I) of mango (Mangifera indica) slices measuring 4 × 1 × 1 cm3. To this end, the Doehlert response surface plan was used, with the following factors for D2I: the volume of D2I solution/fruit mass ratio (6/1-13/1 mL/g), the process time (120-360 min) and the Brix degree of the solution (45-65 °Brix) and with the following factors for D3I: immersion time (20-60 min), process time (60-300 min) and de-immersion time (7-25 min). The temperature was fixed according to literature at 35 °C. The optimum responses obtained for the D2I process were (47.63 ± 1.79) g/100 g (w-b) for water loss, and (6.67 ± 1.04) g/100 g (w-b) for solute gain, for optimum operating conditions of 6/1 mL/g; 245 min and 61.6°Brix respectively for the immersion ratio, process time and solute concentration of the hypertonic solution. The optimum responses obtained for D3I process were (47.98 ± 2.12) g/100 g (w-b) for water loss, and (4.31 ± 0.052) g/100 g (w-b) for solute gain (SG), for operating conditions of 21; 270; and 9 min, respectively for immersion time, process time and de-immersion time. The Student's t-test on the predicted and experimental optima of WL and SG revealed valuable insights for comparing these two processes. The present study will undoubtedly introduce a new dynamic to the osmotic dehydration systems for fruits and vegetables.

5.
Heliyon ; 10(16): e36496, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39247357

RESUMO

Raw mango peel (RMP) was first saponified to yield saponified mango peel (SMP), which was then loaded with Zr(IV) ions to form a biosorbent for As(III) scavenging.The biosorption behaviors and mechanisms of As(III) scavenging using RMP and Zr(IV)-loaded saponified mango peel (Zr(IV)-SMP) were investigated batchwise. The As(III) scavenging efficiency of RMP increased from 20.13 % to 87.32 % after Zr(IV) loading. Optimum contact time of 6 h has been investigated for As(III) scavenging by Zr(IV)-SMP, and the data on kinetics is well fitted to the pseudo-second-order (PSO) model. Similarly, isotherm data of Zr(IV)-SMP fitted well to the Langmuir isotherm model with the maximum As(III) scavenging potential of 45.52 mg/g. Chloride (Cl-) and nitrate (NO3 -) have negligible influence on As(III) scavenging, but sulphate (SO4 2-) interferes significantly. The exhausted Zr(IV)-SMP could be easily regenerated by treating with 2MNaOH. A mechanistic study indicates that As(III) scavenging is primarily contributed to electrostatic interaction and ligand exchange, which is confirmed from both instrumental and chemical characterizations techniques. Tubewell underground water polluted with a trace amount of arsenic (98.63 µg/L) could be successfully lowered down to the WHO standard (10 µg/L) by applying a small amount of Zr(IV)-SMP. Therefore, the Zr(IV)-SMP investigated in this work can be a low-cost, environmentally benign, and promising alternative for scavenging trace levels of arsenic from contaminated water.

6.
Foods ; 13(15)2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39123595

RESUMO

Since various bioactive substances are unstable and can degrade in the gastrointestinal tract, their stabilization is crucial. This study aimed to encapsulate mango peel extract (MPE) into edible alginate beads using the ionotropic gelation method for the potential oral delivery of bioactive substances. Mango peels, generally discarded and environmentally harmful, are rich in health-promoting bioactive substances. The alginate beads were examined for entrapment efficiency, particle size, morphology, thermal stability, physiochemical interactions, release profile under gastrointestinal conditions, and antibacterial efficacy. The study demonstrated the successful encapsulation of MPE with an efficiency of 63.1%. The in vitro release study showed the stability of the alginate beads in simulated gastric fluid with a maximum release of 45.0%, and sustained, almost complete release (99.4%) in simulated intestinal fluid, indicating successful absorption into the human body. In both fluids, the MPE release followed first-order kinetics. Encapsulation successfully maintained the antibacterial properties of MPE, with significant inhibitory activity against pathogenic intestinal bacteria. This is the first study on MPE encapsulation in alginate beads, presenting a promising oral delivery system for high-added-value applications in the food industry for dietary supplements, functional foods, or food additives. Their production is sustainable and economical, utilizing waste material and reducing environmental pollution.

7.
Molecules ; 29(15)2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39124963

RESUMO

Plant glucanases and chitinases are defense proteins that participate in pathogenesis; however, very little is known about the glucanase (GLUC) and chitinase (CHIT) gene families in mango. Some mango cultivars are of great economic importance and can be affected by anthracnose, a postharvest disease caused by fungi of the genus Colletotrichum spp. This study identified and characterized 23 putative glucanases and 16 chitinases in the mango genome cv. Tommy Atkins. We used phylogenetic analyses to classify the glucanases into three subclasses (A, B, and C) and the chitinases into four classes (I, II, IV, and V). Information on the salicylic, jasmonic acid, and ethylene pathways was obtained by analyzing the cis-elements of the GLUC and CHIT class I and IV gene promoters. The expression profile of GLUC, CHIT class I, and CHIT class IV genes in mango cv. Ataulfo inoculated with two Colletotrichum spp. revealed different profile expression related to these fungi's level of virulence. In general, this study provides the basis for the functional validation of these target genes with which the regulatory mechanisms used by glucanases and chitinases as defense proteins in mango can be elucidated.


Assuntos
Quitinases , Colletotrichum , Regulação da Expressão Gênica de Plantas , Mangifera , Filogenia , Doenças das Plantas , Colletotrichum/patogenicidade , Colletotrichum/genética , Mangifera/microbiologia , Mangifera/genética , Quitinases/genética , Quitinases/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Perfilação da Expressão Gênica
8.
Heliyon ; 10(15): e35184, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39170338

RESUMO

In Mexico, about 40 % of the mango harvest is lost due to marketing problems. Moreover, the mango industry generates peel and seed waste that ranges from 35 to 60 % of the total weight of processed fruits. This unexploited mango biomass represents a potential resource for producing value-added by-products. A market alternative is exploiting the mango peel as a source of biofunctional compounds, such as pectin. This hydrocolloid has applications in the pharmaceutical, cosmetic, and food industries. This study quantified the peel components of the Ataulfo, Panameño, Manila, and Haden cultivars. The mango peel showed a considerable input of dietary fiber (37-45 % DM), minerals (1018-2156 mg/100 g DM), phenols (2123-4851 mg gallic acid equivalent/100 g DM), flavonoids (0.74-2.7 mg quercetin equivalent/g DM) and antioxidant capacity (375-937 µM Trolox equivalent/g DM). The four cultivars presented high methoxyl pectins (66-71 %). The molecular weight of the pectins analyzed was from 957 to 4859 kDa. The Panameño cultivar showed the highest amount of pectin and viscosity concerning the peel of the other cultivars and a higher content of glucomannans (≈28.21 %). The pectin of the Haden cultivar was the only one with arabinoxylans since xylose was not detected in the pectin of the other cultivars. The chemical characteristics of the studied mango peels are promising for their industrialization.

9.
Int J Biol Macromol ; 278(Pt 2): 134874, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39168196

RESUMO

The escalating interest in bacterial cellulose (BC) confronts a substantial obstacle due to its biologically inert properties. Hence, BC was modified with ethanolic mango peel extract (EEMP) for various industrial and medical applications of the novel nanocomposite (BC/EEMP). High-performance liquid chromatography (HPLC) delineated the phenolic composition of EEMP, revealing a repertoire of polyphenolic compounds, notably chlorogenic acid, gallic acid, catechin, and ellagic acid. EEMP exhibited broad-spectrum antimicrobial activity against Candida albicans and Staphylococcus aureus, with MIC of 0.018 mg/mL and 0.009 mg/mL, respectively. The removal mechanism of Pb2+ and Ni2+ by BC/EEMP nanocomposite membrane via SEM, EDX, FT-IR, and XRD was characterized, indicating deposition and aggregation of heavy metals with diminished porosity. Heavy metal removal optimization using the Box-Behnken design achieved maximal removal of 95.5 % and 90 % for Pb2+ and Ni2+, respectively. Moreover, BC/EEMP nanocomposite demonstrated selective dose-dependent anticancer activity toward hepatoma (HepG-2, IC50 of 208.8 µg/mL), skin carcinoma (A431, IC50 of 216.7 µg/mL), and breast carcinoma (MDA, IC50 of 197.5 µg/mL), attributed to the enhanced availability of biologically active polyphenolic compounds and physical characteristics of BC. This study underscores the remarkable potential of BC/EEMP nanocomposite for multifaceted industrial and biomedical applications, marking a pioneering contribution to the field.

10.
Plant Pathol J ; 40(4): 399-407, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39117338

RESUMO

Dieback disease in mango trees has been observed in Indonesia, particularly in Java Island, with the causal agent remaining unidentified. One of the important pathogens that are responsible for causing mango dieback is Colletotrichum. Field surveys were conducted in various mango cultivating areas in Java Island, Indonesia to assess prevalence of Colletotrichum as dieback disease pathogen. Eleven Colletotrichum isolates were recovered from symptomatic dieback twigs and morphologically characterized. Genetic diversity fingerprint analysis was carried out using rep-PCR. Phylogenetic analysis identified isolates as belonging to Colletotrichum asianum and Colletotrichum cairnsense using partial sequences of four gene regions, including ITS, ACT, GAPDH, and TUB2. Pathogenicity tests on mango seedlings cv. Arumanis showed that all fungal isolates were responsible for causing dieback symptoms. Subsequently, symptomatic tissue was reisolated to fulfill Koch's Postulate. This study represented new funding for two species of Colletotrichum causing mango dieback in Indonesia.

11.
J Agric Food Chem ; 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39207846

RESUMO

Understanding volatile compound formation is critical for enhancing the flavor quality of mangoes. Integrated untargeted metabolomics and proteomics were employed to explore volatile compound formation in three different polyembryonic mango cultivars ("Ah Ping," "Rosa," and "Rosigold"). A total of 87 volatile compounds were identified using SPME-GC-MS. Untargeted metabolomics and proteomics resulted in identification of 508 metabolites and 4481 proteins, respectively. Integrative analysis revealed that the volatile compound formation was influenced by fatty acids, amino acids, pentose, and hexose, as well as terpenoid metabolisms. Specifically, upward expression of core enzymes in lipoxygenanse pathway was responsible for the higher levels of some C6 and C9 volatile compounds in "Ah Ping." The differential expression of key enzymes in fatty acid degradation facilitates the varied contents of straight-chain volatile compounds. The upregulation of glutamate decarboxylase and branched-chain amino acid aminotransferase upstream of butanoate metabolism led to the highest levels of butyl esters in "Ah Ping." Furthermore, the different levels of volatile furan and pyran compounds might be attributed to differential expression of critical enzymes in pentose and hexose metabolism. These findings established a metabolic and proteomic map unraveling the biosynthesis of specific volatile compounds and provided insights into understanding the characteristic flavor of mango.

12.
Heliyon ; 10(15): e34695, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39166059

RESUMO

The effect of 1-methylcyclopropene (1-MCP) treatments and storage conditions in the regulation of the physicochemical and bioactive properties of mango fruits (Mangifera indica L. cv. BARI-4) were investigated during storage. Different concentrations of 1-MCP treated samples (T0 = Control, T1 = 0.5 µL/L, T2 = 1.0 µL/L, T3 = 1.5 µL/L, and T4 = 2.0 µL/L) were stored in developed storage structure (10±1 °C and 90 % RH), cold storage (3 ± 1 °C and 80 ± 2 % RH), and ambient storage (29 ± 3 °C and 65 ± 2 % RH). The change in fruit quality including weight loss, firmness, surface color, storage life, chemical, and bioactive properties were studied periodically at 10, 20, 30 and 40 days of storage. The results demonstrated that 1-MCP treatment effectively maintained the quality of fruits by retarding the loss of weight, firmness, total soluble solids (TSS), and titratable acidity, which were served as a quality parameter during storage. The 1-MCP treatment dramatically delayed the change in color, quality measures, and bioactive properties compared to the control group. The storage condition greatly influenced the postharvest quality value and storage life. In combination with the developed storage structure and 1-MCP treatment preserved the acceptability of fruits to a great extent for around 40 days. The T2 = 1.0 µL/L 1-MCP treatment preserved the fruit quality for the highest days of storage 14, 34, and 46 days in ambient storage, cold storage, and develop storage structure respectively. The developed storage structure (10 ± 1 °C and 90 % RH) with 1-MCP (1.0 µL/L) treatment suggested the optimum storage ability for preserving the postharvest storage life of mango fruits. By implementing these findings mango growers and suppliers can reduce post-harvest losses, expand market reach, and provide consumers with high-quality mangoes that retain their quality for an extended period.

13.
Food Chem ; 462: 140949, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39213976

RESUMO

Hydrogels based on natural polymers have aroused interest from the scientific community. The aim of this investigation was to obtain natural extracts from mango peels and to evaluate their addition (1, 3, and 5%) on the rheological behavior of mango starch hydrogels. The total phenolic content, antioxidant activities, and phenolic acid profile of the natural extracts were evaluated. The viscoelastic and thixotropic behavior of hydrogels with the addition of natural extracts was evaluated. The total phenol content and antioxidant activity of the extracts increased significantly (p<0.05) with the variation of the ethanol-water ratio; the phenolic acid profile showed the contain of p-coumaric, ellagic, ferulic, chlorogenic acids, epicatechein, catechin, querecetin, and mangiferin. The viscoelastic behavior of the hydrogels showed that the storage modulus G' is larger than the loss modulus G'' indicating a viscoelastic solid behavior. The addition of extract improved the thermal stability of the hydrogels. 1% of the extracts increase viscoelastic and thixotropic properties, while concentrations of 3 to 5% decreased. The recovery percentage (%Re) decreases at concentrations from 0% to 1% of natural extracts, however, at concentrations from 3% to 5% increased.

14.
Sci Total Environ ; 951: 175297, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39127209

RESUMO

Excessive utilization of chemical fertilizers in mango orchards not only hampers the attainment of sustainable harvests but also poses significant ecological detriments. This investigation proposes a promising solution by advocating the judicious replacement of chemical fertilizers with organic fertilizer (OF) and slow-release fertilizer (SRF), with potential to bolster soil health and augment crop productivity. In light of the promise held by these alternatives, it is imperative to establish detailed fertilization protocols for enhanced sustainable practices in mango farming. This two-year field study employed a comprehensive suite of seven fertilization strategies, unveiling that a 25 % chemical fertilizers substitution with OF and SRF improved mango yields by 12.5 % and 11.3 %, respectively, over standard practices. Additionally, these approaches substantially augmented the nutritional quality of mangoes, evident from Vitamin C enhancements of 53.9 % to 56.9 %, and improvements in sugar-to-acid ratio (19.2 %-30.3 %) and solid-to-acid ratio (12.1 %-25.3 %). Notably, the application of OF and SRF led to increased leaf nitrogen and phosphorus concentrations, while simultaneously reducing soil phosphorus and potassium levels. Furthermore, these fertilizers fostered the growth of beneficial soil microorganisms, namely Actinobacteria and Proteobacteria, and strengthened the synergy within the soil bacterial community, hence optimizing bacterial competition and nutrient cycling. The study proposes that the adoption of OF or SRF can effectively regulate soil nutrient balance, promote resilient and functional soil bacterial ecosystems, and ultimately improve mango yield and fruit quality. It recommends a fertilization scheme incorporating 25 % organic or slow-release nitrogen to align with ecological sustainability goals, promoting a more vigorous and resilient soil and crop system.

15.
Saudi J Biol Sci ; 31(8): 104033, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38946846

RESUMO

Plant phenolics have been known for various biological activities. This study aims to extract and examine the presence of phenolics in Bao mango (Mangifera indica L. var.) peel ethanolic extract (MPE). Further, antioxidant, anti-diabetic (α-amylase, and α-glucosidase inhibitory activity), and anti- Alzheimer's disease (AD) (acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and ß-secretase (BACE-1) inhibitory activity) efficacy of MPE were determined. The results indicated that mangiferin (8755.89 mg/ 100 g extract) was the major phenolic compound in MPE. An antioxidant mechanism revealed that MPE had a higher radical scavenging ability (4266.70 µmol TE/g extract) compared to reducing power (FRAP) or oxygen radical absorption capacity (ORAC). Further in-vitro enzyme inhibitory assay against diabetic and AD involved enzymes showed that MPE had stronger inhibitory action against an enzyme involved in diabetes compared to their standard drug (Acarbose) (P < 0.05). While a lower IC50 value was observed against AD-involved enzymes compared to their standard drug (donepezil) (P < 0.05). The results show that Thai Bao mango peel byproduct can be a potential source of nutraceuticals to lower diabetes and improve cognitive health.

16.
PeerJ ; 12: e17737, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39035161

RESUMO

Mango is a popular tropical fruit that requires quarantine hot water treatment (QHWT) for postharvest sanitation, which can cause abiotic stress. Plants have various defense mechanisms to cope with stress; miRNAs mainly regulate the expression of these defense responses. Proteins involved in the biogenesis of miRNAs include DICER-like (DCL), ARGONAUTE (AGO), HYPONASTIC LEAVES 1 (HYL1), SERRATE (SE), HUA ENHANCER1 (HEN1), HASTY (HST), and HEAT-SHOCK PROTEIN 90 (HSP90), among others. According to our analysis, the mango genome contains five DCL, thirteen AGO, six HYL, two SE, one HEN1, one HST, and five putative HSP90 genes. Gene structure prediction and domain identification indicate that sequences contain key domains for their respective gene families, including the RNase III domain in DCL and PAZ and PIWI domains for AGOs. In addition, phylogenetic analysis indicates the formation of clades that include the mango sequences and their respective orthologs in other flowering plant species, supporting the idea these are functional orthologs. The analysis of cis-regulatory elements of these genes allowed the identification of MYB, ABRE, GARE, MYC, and MeJA-responsive elements involved in stress responses. Gene expression analysis showed that most genes are induced between 3 to 6 h after QHWT, supporting the early role of miRNAs in stress response. Interestingly, our results suggest that mango rapidly induces the production of miRNAs after heat stress. This research will enable us to investigate further the regulation of gene expression and its effects on commercially cultivated fruits, such as mango, while maintaining sanitary standards.


Assuntos
Resposta ao Choque Térmico , Mangifera , MicroRNAs , Mangifera/genética , Mangifera/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Resposta ao Choque Térmico/genética , Filogenia , Família Multigênica/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
17.
Food Technol Biotechnol ; 62(2): 242-253, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39045304

RESUMO

Research background: Mango peel is a production waste and can cause environmental problems, but its nutritional value consists of bioactive compounds that could be beneficial for human health. The aim of this study is to determine the bioactive compounds, antioxidant and anti-inflammatory activities of mango peels and their use in muffins. Experimental approach: The content of polyphenols, carotenoids and total phenols as well as the antioxidant activity of mango peel extract were evaluated. The anti-inflammatory activity of the extract was investigated using Caco-2 cell assay. The mango peel powder was then incorporated into muffin formulations. The sensory properties of these fortified muffins were evaluated. The total phenolic content, antioxidant activity and anti-inflammatory properties of the muffin extracts and their bioaccessible fractions were also analysed. Results and conclusions: The mango peel contained quercetin, phenolic compounds, α-carotene, ß-carotene and lutein, which have antioxidant potential. In Caco-2 cells exposed to induced inflammation, the mango peel powder extract (γ=10, 50 and 100 µg/mL) attenuated the production of reactive oxygen species (ROS), tumour necrosis factor-alpha (TNF-α) and interleukin-8 (IL-8), while maintaining cell viability. Muffins supplemented with 5 % mango peel powder showed good sensory properties, but not as good as those of plain muffins without mango peel powder. The total phenolic content and antioxidant activities in both the extract and the bioaccessible fraction of the supplemented muffins were higher than those observed in the standard muffins. Moreover, the extract and bioaccessible fraction of the supplemented muffins resulted in a higher reduction of ROS, IL-8 and TNF-α production in Caco-2 cells than those obtained from the standard muffins. Novelty and scientific contribution: This study is the first to investigate the protective effects of mango peel and muffins supplemented with mango peel powder against IL-1ß-induced oxidative damage in Caco-2 cells. The results confirm that both mango peel and the supplemented muffins inhibited the production of inflammatory markers, including ROS and cytokines. These findings suggest that mango peel could be a valuable component of functional food formulations including dietary supplements.

18.
Heliyon ; 10(12): e33247, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39027430

RESUMO

India is renowned for its mango diversity, with more than 1000 genotypes reported. However, the Himalayan plains bear some elite genotypes which supposed to bear high postharvest value, the systemic postharvest study of which is yet to be attempted. The aim of present study is to evaluate the postharvest quality and ripening behviour of these important genotypes. Thus, 15 un-explored mango genotypes of this region were selected and evaluated for ripening behaviour and detailed postharvest profiling via internal (total phenolic and total flavonoid content), nutritional attributes (Brix: acid ratio, total carotenoid concentration, ascorbic acid content and antioxidant activity), sensory evaluation, fruit softening enzymes (polygalactouronase, pectin methylesterase and lipoxygenase), shelf life attributes (respiration rate, physiological loss in weight and storage life in days) external attributes (fruit weight, fruit firmness, peel thickness, fruit shape and dry seed weight) and mineral contents (Calcium, potassium and phosphorous) under ambient storage (25 ± 4 °C and 65 ± 5 % RH). The results revealed that the highest total flavonoid content (682.40 µg g-1), ascorbic acid (46.88 mg 100 g-1) and antioxidant activity (4.84 µmol TE g-1) exhibited by 'Sukul'. The total phenolic content was recorded as the highest in 'Safed Malda' (510.42 µg GAE g-1 FW), and total carotenoid concentration was recorded as the highest in 'Sipiya' (7.30 mg 100 g-1) 'Zardalu' (7.04 mg 100 g-1) and 'Mithua' (6.98 mg 100 g-1). Interestingly, genotypes such as 'Sukul', Sipiya' and 'Krishna Bhog 'exhibited a 4-5 days higher storage life than other selected genotypes. Screened genotypes exhibited a high diversity of nutritional and biochemical contents. The results of this study bear practical utility for research (quality improvement programme) and the processing industry.

19.
J Fluoresc ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38954082

RESUMO

The current study looks into the characterization and differentiation of mango juices that are sold commercially using fluorescence spectroscopy. The emission spectra displayed well-defined and prominent peaks that suggested the existence of many fluorophores, such as water content, ß-carotene, tartrazine food color, and chlorophyll components. For this study, water and yellow food coloring solution, the two most popular adulterants were added to pure and authenticated mango pulp that had been diluted to an 8% concentration. The fluorophore profile of the samples was ascertained by using multivariate analysis (principal component analysis) in conjunction with fluorescence spectroscopy. The findings showed that the existence of water content is directly correlated with the spectral bands at 444 and 467 nm, and for food color at 580 nm thus the best indicators to detect adulteration of high water contents and food color. Chlorophyll and ß-carotene intensities varied among juices, acting as a discriminant marker to distinguish between those with unripened pulp (high chlorophyll intensity) and those with more water and other pigments (lower chlorophyll and ß-carotene intensities). With fluorescence emission spectroscopy, qualitative assessment of mango juice can be quickly determined by spectral features, providing details on composition and quality.

20.
J Biochem Mol Toxicol ; 38(7): e23765, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38967724

RESUMO

Mangiferin is a naturally occurring glucosylxanthone that has shown promising immunomodulatory effects. It is generally isolated from the leaves, peels, bark, and kernels of Mangifera indica Linn. Mangiferin is like a miraculous natural bioactive molecule that has an immunomodulatory function that makes it a potential therapeutic candidate for the treatment of rheumatoid arthritis (RA) and cancer. The anticancer activity of mangiferin acts by blocking NF-κB, as well as regulating the ß-catenin, EMT, MMP9, MMP2, LDH, ROS, and NO, and also by the activation of macrophages. It has no cytotoxic effect on grown chondrocytes and lowers matrix metalloproteinase levels. Additionally, it has a potent proapoptotic impact on synoviocytes. The precise molecular mechanism of action of mangiferin on RA and malignancies is still unknown. This comprehensive review elaborates on the immunomodulatory effect of mangiferin and its anticancer and anti-RA activity. This also explained the total synthesis of mangiferin and its in vitro and in vivo screening models.


Assuntos
Artrite Reumatoide , Neoplasias , Xantonas , Xantonas/farmacologia , Xantonas/uso terapêutico , Xantonas/química , Humanos , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/imunologia , Animais , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Agentes de Imunomodulação/farmacologia , Agentes de Imunomodulação/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA