Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Bioresour Technol ; 406: 130982, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38879055

RESUMO

Cotreatment, mechanical disruption of lignocellulosic biomass during microbial fermentation, is a potential alternative to thermochemical pretreatment as a means of increasing the accessibility of lignocellulose to biological attack. Successful implementation of cotreatment requires microbes that can withstand milling, while solubilizing and utilizing carbohydrates from lignocellulose. In this context, cotreatment with thermophilic, lignocellulose-fermenting bacteria has been successfully evaluated for a number of lignocellulosic feedstocks. Here, cotreatment was applied to sugarcane bagasse using monocultures of the cellulose-fermenting Clostridium thermocellum and cocultures with the hemicellulose-fermenting Thermoanaerobacterium thermosaccharolyticum. This resulted in 76 % carbohydrate solubilization (a 1.8-fold increase over non-cotreated controls) on 10 g/L solids loading, having greater effect on the hemicellulose fraction. With cotreatment, fermentation by wild-type cultures at low substrate concentrations increased cumulative product formation by 45 % for the monoculture and 32 % for the coculture. These findings highlight the potential of cotreatment for enhancing deconstruction of sugarcane bagasse using thermophilic bacteria.


Assuntos
Celulose , Técnicas de Cocultura , Fermentação , Saccharum , Solubilidade , Saccharum/química , Celulose/metabolismo , Celulose/química , Clostridium thermocellum/metabolismo , Thermoanaerobacterium/metabolismo , Lignina/metabolismo , Lignina/química , Bactérias Anaeróbias/metabolismo
2.
J Dent ; 147: 105089, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38772449

RESUMO

OBJECTIVE: The purpose of this systematic review and meta-analysis was to evaluate the accuracy (trueness and precision), marginal and internal adaptation, and margin quality of zirconia crowns made by additive manufacturing compared to subtractive manufacturing technology. METHODS: The investigation adhered to the PRISMA-ScR guidelines for systematic reviews and was registered at the Prospero database (n°CRD42023452927). Four electronic databases, including PubMed, Scopus, Embase, and Web of Science and manual search was conducted to find relevant studies published until September 2023. In vitro studies that assessed the trueness and precision, marginal and internal adaptation, and margin quality of printed crowns compared to milled ones were included. Studies on crowns over implants, pontics, temporary restorations, laminates, or exclusively experimental materials were excluded. RESULTS: A total of 9 studies were included in the descriptive reporting and 7 for meta-analysis. The global meta-analysis of the trueness (P<0.74,I2=90 %) and the margin quality (P<0.61,I2=0 %) indicated no significant difference between the root mean square of printed and milled zirconia crowns. The subgroup analysis for the printing system showed a significant effect (P<0.01). The meta-analysis of the crown areas indicated no significant difference in most of the areas, except for the marginal (favoring milled crowns) and axial (favoring printed crowns) areas. For precision and adaptation, both methods showed a clinically acceptable level. CONCLUSIONS: Additive manufacturing technology produces crowns with trueness and margin quality comparable to subtractive manufacturing. Both techniques have demonstrated the ability to produce crowns with precision levels, internal discrepancy, and marginal fit within clinically acceptable limits. CLINICAL SIGNIFICANCE: 3D printing emerges as a promising and potentially applicable alternative method for manufacturing zirconia crowns, as it shows trueness and margin quality comparable to restorations produced by the subtractive method.


Assuntos
Coroas , Adaptação Marginal Dentária , Planejamento de Prótese Dentária , Impressão Tridimensional , Zircônio , Zircônio/química , Humanos , Planejamento de Prótese Dentária/métodos , Desenho Assistido por Computador , Materiais Dentários/química
3.
Chempluschem ; : e202400257, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38819438

RESUMO

Mechanochemical reactions by ball milling have opened new avenues in chemical synthesis. Particularly, mechanochemistry has facilitated the reaction of insoluble materials to simplify stablished synthetic protocols and develop new ones. One notable application involves the use of calcium carbide (CaC2) as a C2-synthon through mechanochemistry, which has offered a more practical alternative to incorporate C2-units compared to the conventional use of highly flammable gaseous acetylene. For example, by ball milling, the acetylenic anions [C2]2- found in CaC2 have been harnessed for the synthesis of diverse functional carbon materials as well as discrete organic molecules. This Concept aims to contribute to the conceptualization of this innovative approach while highlighting both its advantages and the challenges inherent in the use of CaC2.

4.
J Mech Behav Biomed Mater ; 154: 106533, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38598918

RESUMO

The present work aims to develop a production method of pre-sintered zirconia-toughened-alumina (ZTA) composite blocks for machining in a computer-aided design and computer-aided manufacturing (CAD-CAM) system. The ZTA composite comprised of 80% Al2O3 and 20% ZrO2 was synthesized, uniaxially and isostatically pressed to generate machinable CAD-CAM blocks. Fourteen green-body blocks were prepared and pre-sintered at 1000 °C. After cooling and holder gluing, a stereolithography (STL) file was designed and uploaded to manufacture disk-shaped specimens projected to comply with ISO 6872:2015. Seventy specimens were produced through machining of the blocks, samples were sintered at 1600 °C and two-sided polished. Half of the samples were subjected to accelerated autoclave hydrothermal aging (20h at 134 °C and 2.2 bar). Immediate and aged samples were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Optical and mechanical properties were assessed by reflectance tests and by biaxial flexural strength test, Vickers indentation and fracture toughness, respectively. Samples produced by machining presented high density and smooth surfaces at SEM evaluation with few microstructural defects. XRD evaluation depicted characteristic peaks of alpha alumina and tetragonal zirconia and autoclave aging had no effect on the crystalline spectra of the composite. Optical and mechanical evaluations demonstrated a high masking ability for the composite and a characteristic strength of 464 MPa and Weibull modulus of 17, with no significant alterations after aging. The milled composite exhibited a hardness of 17.61 GPa and fracture toughness of 5.63 MPa m1/2, which remained unaltered after aging. The synthesis of ZTA blocks for CAD-CAM was successful and allowed for the milling of disk-shaped specimens using the grinding method of the CAD-CAM system. ZTA composite properties were unaffected by hydrothermal autoclave aging and present a promising alternative for the manufacture of infrastructures of fixed dental prostheses.


Assuntos
Óxido de Alumínio , Cerâmica , Teste de Materiais , Óxido de Alumínio/química , Cerâmica/química , Propriedades de Superfície , Zircônio/química , Desenho Assistido por Computador , Materiais Dentários
5.
Angew Chem Int Ed Engl ; 63(14): e202317638, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38179857

RESUMO

Mechanochemical reactions offer methodological and environmental advantages for chemical synthesis, constantly attracting attention within the scientific community. Besides unmistakable sustainability advantages, the conditions under which mechanochemical reactions occur, namely solventless conditions, sometimes facilitate the isolation of otherwise labile or inaccessible products. Despite these advantages, limited knowledge exists regarding the mechanisms of these reactions and the types of intermediates involved. Nevertheless, in an expanding number of cases, ex situ and in situ monitoring techniques have allowed for the observation, characterization, and isolation of reaction intermediates in mechanochemical transformations. In this Minireview, we present a series of examples in which reactive intermediates have been detected in mechanochemical reactions spanning organic, organometallic, inorganic, and materials chemistry. Many of these intermediates were stabilized by non-covalent interactions, which played a pivotal role in guiding the chemical transformations. We believe that by uncovering and understanding such instances, the growing mechanochemistry community could find novel opportunities in catalysis and discover new mechanochemical reactions while achieving simplification in chemical reaction design.

6.
Int J Biol Macromol ; 260(Pt 2): 129579, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38266852

RESUMO

High Energy Ball-Milling (HEBM) modifies starchs' granule morphology, physicochemical properties, and chemical structure. However, understanding how the HEBM changes the starch chemical structure is necessary to control these modifications. Therefore, this study aimed to investigate the changes in potato starch's long- and short-range molecular order during HEBM at different environmental conditions such as oxygen (Air) and humidity content. Due to the correlation between the starch modification and the energy supplied (Esupp) by the HEBM, Burgio's equation was used to calculate this energy. The starch transformation was followed by X-ray diffraction, Fourier Transform-Infrared Spectroscopy, and Raman spectroscopy. A Principal Component Analysis (PCA) was conducted to reduce the HEBM variables. PAC analysis demonstrated that the different oxygen-humidity conditions do not affect the HEBM of potato starch. Based on the starch chemical structure transformation correlated with Esupp during HEBM, four stages were observed: orientation, modification, mechanolysis, and over-destruction. It was identified for the first time that at low milling energy (<1.5 kJ/g, orientation stage), the glycosidic rings change their orientation, and starch-water interaction increases while the starch's organization reduces. Ergo, the potato starch could be more susceptible to chemical modifications during the first two stages.


Assuntos
Solanum tuberosum , Solanum tuberosum/química , Amilose/química , Umidade , Oxigênio , Amido/química , Difração de Raios X
7.
Sensors (Basel) ; 23(21)2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37960667

RESUMO

This research presents an experimental study focused on measuring temperature at the tool flank during the up-milling process at high cutting speed. The proposed system deals with emissivity compensation through a two-photodetector system and during calibration. A ratio pyrometer composed of two photodetectors and a multimode fiber-optic coupler is employed to capture the radiation emitted by the cutting insert. The pyrometer is calibrated using an innovative calibration system that addresses theoretical discrepancies arising from various factors affecting the measurement of cutting temperature. This calibration system replicates the milling process to generate a calibration curve. Experimentally, AISI 4140 steel is machined with coated tungsten carbide inserts, using cutting speeds of 300 and 400 m/min, and feed rates of 0.08 and 0.16 mm/tooth. The results reveal a maximum recorded cutting temperature of 518 °C and a minimum of 304 °C. The cutting temperature tends to increase with higher cutting speeds and feed rates, with cutting speed being the more influential factor in this increase. Both the pyrometer calibration and experimental outcomes yield satisfactory results. Finally, the results showed that the process and the device prove to be a convenient, effective, and precise method of measuring cutting temperature in machine processes.

8.
Pharmaceutics ; 15(11)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-38004524

RESUMO

To prevent neural tube defects and other cardiovascular diseases in newborns, folic acid (FA) is recommended in pregnant women. A daily dose of 600 µg FA consumption is widely prescribed for women during pregnancy and 400 µg for women with childbearing potential. FA is a class IV compound according to the Biopharmaceutics Classification System (BCS) due to its low permeability (1.7 × 10-6 cm/s) and low solubility (1.6 mg/L); therefore, it must be administered via a formulation that enhances its solubility. Studies reported in the literature have proved that co-amorphization and salt formation of a poorly soluble drug with amino acids (AA) can significantly increase its solubility. Although arginine has been used with FA as a supplement, there is no information on the effect of basic AA (arginine and lysine) on the physical and chemical properties of FA-AA binary formulations. The present study implemented a conductimetric titration methodology to find the effective molar ratio to maximize FA solubility. The results showed that a 1:2.5 FA:AA molar ratio maximized solubility for arginine and lysine. Binary formulations were prepared using different methods, which led to an amorphous system confirmed by the presence of a glass transition, broad FTIR bands, and the absence of an X-ray diffraction pattern. Results of FA:AA (1:2.5) solubility increased in the range of 5500-6000 times compared with pure FA. In addition to solubility enhancement, the binary systems presented morphological properties that depend on the preparation method and whose consideration could be strategic for scaling purposes.

9.
Foods ; 12(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37569193

RESUMO

Starch's crystalline structure and gelatinization temperature might facilitate or hinder its use. Ball milling has frequently been mentioned in the literature as a method for reducing starch size and as a more environmentally friendly way to change starch, such as by increasing surface area and reactivity, which has an impact on other starch properties. In this study, starch samples were milled for varying durations (1, 5, 10, 20, and 30 h) and at different starch-to-ball mass ratios (1:6 and 1:20). Microscopy and XRD revealed that prolonged milling resulted in effective fragmentation and a decrease in crystallinity of the starch granules. Increasing milling times resulted in an increase in amylose content. Rheology and thermal studies revealed that gelatinization temperatures dropped with milling duration and that viscosity and thixotropy were directly influenced. The samples milled for 10, 20, and 30 h at a ratio of 1:20 were the most fragmented and upon drying formed a transparent film at ambient temperature, because of the lower gelatinization temperature. Starch ball milling could lead to the use of this material in thermosensitive systems.

10.
Foods ; 12(16)2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37628029

RESUMO

The absence of gluten proteins in sorghum allows for the production of baked goods that are suitable for celiacs. Previous studies have shown that the milling process affects the performance of sorghum flour in baked products, especially those that are gluten-free (GF). This study aimed to explore the effects of mill type (impact and roller) on flour properties and GF bread quality by assessing the technological quality, antioxidant activity, and mineral content of the bread. All particle populations of flour obtained via both millings presented a bimodal distribution, and the volume mean diameter (D 4,3) ranged from 431.6 µm to 561.6 µm. The partially refined milled flour obtained via polishing and impact milling produced bread with a soft crumb, fewer but larger alveoli in the crumb, and a structure that did not collapse during baking, showing the best performance in bread quality. In the in vitro bread digestibility assay, the total polyphenol content and antioxidant activity decreased during the digestion steps. High mineral (Cu, Fe, Mn, and Zn) contents were also found in a portion of the bread (120 g) made with whole sorghum flour; however, their potential bioavailability was reduced in the presence of a higher amount of bran.

11.
Food Chem ; 427: 136720, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37423046

RESUMO

This work evaluates the effect of high-energy mechanical milling time (7 levels, 20-80 min) on amylose content, crystallinity pattern, temperature and gelatinization enthalpy, morphology, and rheological properties of chayotextle (Sechium edule Sw.) starch. After 30 min of milling, granular structure was affected, and amylose values were the highest while crystallinity and gelatinization enthalpy decreased significantly. These changes allowed to obtain gels with viscoelastic properties where the elastic character (Ç´) prevailed upon the viscous modulus (Ǵ́). Native starch showed Tan δ values of 0.6, increased significantly (0.9) after 30 min of milling due to the surge in linear chains (amylose) and loss of granular structure. Native and modified starches showed high dependence on cutting or shear speed, presenting a non-Newtonian behavior (reofluidizers). These results indicate that mechanical grinding is an alternative to obtain modified starches with applications in the food industry.


Assuntos
Amilose , Amido , Amido/química , Amilose/química , Viscosidade , Temperatura , Termodinâmica , Reologia
12.
Chemistry ; 29(52): e202301290, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37347170

RESUMO

The occurrence of crystalline intermediates in mechanochemical reactions might be more widespread than previously assumed. For example, a recent study involving the acetate-assisted C-H activation of N-Heterocycles with [Cp*RhCl2 ]2 by ball milling revealed the formation of transient cocrystals between the reagents prior to the C-H activation step. However, such crystalline intermediates were only observed through stepwise intervallic ex-situ analysis, and their exact role in the C-H activation process remained unclear. In this study, we monitored the formation of discrete, stoichiometric cocrystals between benzo[h]quinoline and [Cp*RhCl2 ]2 by ball milling using in-situ synchrotron X-ray powder diffraction. This continuous analysis revealed an initial cocrystal that transformed into a second crystalline form. Computational studies showed that differences in noncovalent interactions made the [Cp*RhCl2 ]2 unit in the later-appearing cocrystal more reactive towards NaOAc. This demonstrated the advantage of cocrystal formation before the acetate-assisted metalation-deprotonation step, and how the net cooperative action of weak interactions between the reagents in mechanochemical experiments can lead to stable supramolecular assemblies, which can enhance substrate activation under ball-milling conditions. This could explain the superiority of some mechanochemical reactions, such as acetate-assisted C-H activation, compared to their solution-based counterparts.

13.
Int J Mol Sci ; 24(9)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37175641

RESUMO

This review aims to expose mechanical milling as an alternative method for generating copper-based particles (copper particles (CuP) and copper composites (CuC)); more specifically, via a top-down or bottom-up approach, on a lab-scale. This work will also highlight the different parameters that can affect the size distribution, the type, and the morphology of the obtained CuP or CuC, such as the type of mechanical mill, ball-to-powder ratios (BPR), the milling speed, milling time, and the milling environment, among others. This review analyzes various papers based on the Cu-based particle generation route, which begins with a pretreatment step, then mechanical milling, its approach (top-down or bottom-up), and the post-treatment. Finally, the characterization methods of the resulting CuP and CuC through mechanical milling are also discussed.


Assuntos
Cobre , Tamanho da Partícula , Pós
14.
Materials (Basel) ; 16(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36984406

RESUMO

Hydrogen storage in Mg/MgH2 materials is still an active research topic. In this work, a mixture of Mg-15wt.% VCl3 was produced by cryogenic ball milling and tested for hydrogen storage. Short milling time (1 h), liquid N2 cooling, and the use of VCl3 as an additive produced micro-flaked particles approximately 2.5-5.0 µm thick. The Mg-15wt.% VCl3 mixture demonstrated hydrogen uptake even at near room-temperature (50 °C). Mg-15wt.% VCl3 achieved ~5 wt.% hydrogen in 1 min at 300 °C/26 bar. The fast hydriding kinetics is attributed to a reduction of the activation energy of the hydriding reaction (Ea hydriding = 63.8 ± 5.6 kJ/mol). The dehydriding reaction occurred at high temperatures (300-350 °C) and 0.8-1 bar hydrogen pressure. The activation energy of the dehydriding reaction is 123.11 ± 0.6 kJ/mol. Cryomilling and VCl3 drastically improved the hydriding/dehydriding of Mg/MgH2.

15.
Pharmaceutics ; 15(2)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36840006

RESUMO

Triamcinolone acetonide (TA) is a powerful anti-inflammatory drug used in the treatment of inflammatory ocular disorders; however, its poor aqueous solubility and ocular anatomical barriers hinder optimal treatment. The aim of this work was to obtain triamcinolone acetonide nanocrystals (TA-NC) to improve ocular corticosteroid therapy. Self-dispersible TA-NC were prepared by the bead milling technique followed by spray-drying, exhaustively characterized and then evaluated in vivo in an ocular model of endotoxin-induced uveitis (EIU). Self-dispersible TA-NC presented an average particle size of 257 ± 30 nm, a narrow size distribution and a zeta potential of -25 ± 3 mV, which remained unchanged for 120 days under storage conditions at 25 °C. In addition, SEM studies of the TA-NC showed uniform and spherical morphology, and FTIR and XRDP analyses indicated no apparent chemical and crystallinity changes. The subconjunctival administration of TA-NC in albino male white rabbits showed no clinical signs of ocular damage. In vivo studies proved that treatment with self-dispersible TA-NC alleviated the inflammatory response in the anterior chamber and iris in EUI rabbit eyes. Dispersible TA-NC are a promising approach to obtaining a novel nanometric TA formulation for ocular disorders.

16.
Materials (Basel) ; 16(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36837223

RESUMO

The aim of the present investigation is to evaluate the influence of the powder size of Cr3C2-25NiCr spraying powder on the fatigue behavior of HVOF-sprayed coating on the ASTM A516 steel substrate. Conventional commercial Cr3C2-25NiCr spraying powder was previously treated through high-energy milling. The crystallite sizes of milled powders were measured by X-ray diffraction and transmission electronic microscopy. Three different powder formats of the same Cr3C2-25NiCr composite were subjected to HVOF spraying to produce (i) a Milled-Coating (from high-energy milled spray powder), (ii) an Original-Coating (from conventional commercial spray powder), and (iii) a 50%-50% mixture of both (Milled + Original-Coating). The same spraying conditions were adopted for all the assessed cases. The sprayed coatings were investigated through the Knoop hardness test and SEM-EDS analysis. In addition, 3-point bending fatigue tests were conducted at different stress levels up to 107 cycles. The coating morphology and roughness effects on fatigue behavior were analyzed. The Cr3C2-25NiCr milled coating presented a lower fatigue life above the fatigue limit and a higher fatigue limit than other coatings; this outcome could be attributed to its lower surface roughness and finer grain size microstructure.

17.
Nanomaterials (Basel) ; 13(2)2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36678018

RESUMO

Heterojunctions based on metal halide perovskites (MHPs) are promising systems for the photocatalytic hydrogen evolution reaction (HER). In this work, we coupled Cs3Bi2Br9 nanocrystals (NCs), obtained by wet ball milling synthesis, with g-C3N4 nanosheets (NSs), produced by thermal oxidation of bulk g-C3N4, in air. These methods are reproducible, inexpensive and easy to scale up. Heterojunctions with different loadings of Cs3Bi2Br9 NCs were fully characterised and tested for the HER. A relevant improvement of H2 production with respect to pristine carbon nitride was achieved at low NCs levels reaching values up to about 4600 µmol g-1 h-1. This work aims to provide insights into the synthesis of inexpensive and high-performing heterojunctions using MHP for photocatalytic applications.

18.
J Anim Physiol Anim Nutr (Berl) ; 107(2): 367-378, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35534948

RESUMO

The objective of this study was to evaluate the effects of corn hybrid and processing methods on intake and digestibility of nutrients, rumen fermentation and blood metabolites of steers fed no-forage finishing diets. Four ruminally fistulated Nellore castrated steers (502 ± 15 kg initial body weight) were distributed in a 4 × 4 Latin square design with a 2 × 2 factorial arrangement consisting of two corn hybrids (semi-dent and flint) and two processing methods (dry milled and high moisture grain). Interactions of hybrid and processing methods were observed on intake of dry matter (DM), organic matter (OM) and crude protein (CP), as well as on digestibility of DM and CP, rumen pH and ammonia nitrogen (N-NH3 ). There was no interaction between hybrid and processing for the volatile fatty acids (VFA) total, acetate (C2), propionate (C3), isobutyric (iC4) and valeric (nC5) concentrations. VFA total concentration shown an average of 103.4 mmol/L. The C2 and C3 concentrations had no effect of the hybrid or processing with averages of 58.7 mmol/L for C2, and 31.3 mmol/l for C3. There was an effect of the processing method on starch consumption and fecal pH, the highest values were observed in grains with high moisture content. Starch digestibility was 0.89 g/g in dry milled and 0.96 g/g in high moisture corn. The greatest digestibility of starch in high moisture corn, irrespective of the corn hybrid, provided evidence of an increase in the energy supply, which may improve the feed efficiency and growth performance of cattle fed no-roughage finishing diets.


Assuntos
Ração Animal , Zea mays , Bovinos , Animais , Zea mays/metabolismo , Ração Animal/análise , Digestão/fisiologia , Dieta/veterinária , Ácidos Graxos Voláteis/metabolismo , Amido/metabolismo , Rúmen/metabolismo , Fermentação
19.
J Biomed Mater Res B Appl Biomater ; 111(4): 971-980, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36434818

RESUMO

This study evaluated the effect of resin cement coating with high and low viscosities on the flexural fatigue strength of machined lithium disilicate glass-ceramic. Discs (IPS e.max CAD; Ivoclar Vivadent) were prepared and divided according to the surface condition (machining [M]-CEREC inLab; and polishing [P]-laboratory procedures), resin cement coating (with or without), and cement viscosity (high [H] and low [L]). The ceramic bonding surface was etched/primed by a one-step primer application followed by resin cement application (Variolink N base + high or low viscosity catalyst; Ivoclar Vivadent). Biaxial flexural fatigue strength was evaluated on a piston-on-three-ball set by the step-test method (n = 15) (initial stress: 60 MPa; incremental steps: 20 MPa; 10,000 cycles/step, at 20 Hz). Weibull statistics were used for fatigue data. Contact angle, topographic, and fractographic analysis were also performed. Machining produced statistically lower contact angle than polishing and a significant detrimental effect on the fatigue behavior (σ0 M = 247.2 [246.9-268.3]; σ0 P = 337.4 [297.8-382.4]). Machined groups followed by resin cement coating (σ0 MH = 297.9 [276.0-321.5]; σ0 Ml = 301.2 [277.1-327.4]) behaved similarly to the polished and coated groups (σ0 PH = 342.0 [308.9-378.5]; σ0 PL = 357.3 [324.7-393.1]), irrespective of the cement viscosity. Therefore, cement coating has able to revert the detrimental effects of the machining on the fatigue strength of lithium disilicate glass-ceramic. High and low viscosity cements behaved similarly in the improvement of CAD-CAM lithium disilicate fatigue strength.


Assuntos
Cerâmica , Cimentos de Resina , Propriedades de Superfície , Teste de Materiais , Porcelana Dentária
20.
Molecules ; 27(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36364226

RESUMO

Adsorption stand out among other standard techniques used for water treatment because of its remarkable simplicity, easy operation, and high removal capability. Expanded graphite has been selected as a promising agent for oil spill adsorption, but its production involves the generation of corrosive remnants and massive amounts of contaminated washing waters. Although the advantageous use of the H2O2-H2SO4 mixture was described in 1978, reported works using this method are scarce. This work deals with the urgent necessity for the development of alternative chemical routes decreasing their environmental impact (based on green chemistry concepts), presenting a process for expanded graphite production using only two intercalation chemicals, reducing the consumption of sulfuric acid to only 10% and avoiding the use of strong oxidant salts (both environmentally detrimental). Three process parameters were evaluated: milling effect, peroxide concentration, and microwave expansion. Some remarkable results were obtained following this route: high specific volumes elevated oil adsorption rate exhibiting a high oil-water selectivity and rapid adsorption. Furthermore, the recycling capability was checked using up to six adsorption cycles. Results showed that milling time reduces the specimen's expansion rate and oil adsorption capacity due to poor intercalant insertion and generation of small particle sizes.


Assuntos
Grafite , Poluição por Petróleo , Poluentes Químicos da Água , Peróxido de Hidrogênio , Poluentes Químicos da Água/análise , Adsorção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA