Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 526
Filtrar
1.
Ecol Evol ; 14(9): e70206, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39219572

RESUMO

Most plant phylogeographic studies in China have focused on the importance of genetic divergence and where should the shelter be located. Little attention has been paid to range expansion and recolonization routes in this region. In this study, two cpDNA fragments (psbK-psbI and trnL-F), two pairs of nuclear gene sequences (ITS and ETS), and nine pairs of SSR molecular markers were used, combined with Bayesian Skyline Plot method, gene barrier analysis, and species distribution models to explore the phylogeographical pattern, potential expansion routes and population dynamic history of Pinellia ternata from 22 population. The results showed that phylogeograhical pattern and genetic structure for P. ternata are effected by environmental heterogeneity and climate fluctuation, and it can be divided into two groups (Southwest group, Central and Eastern group) and thus there are at least two glacial refugia in China. Three expanding routes within groups were explored to contribute to the phylogeogrephic pattern of P. ternata based on the geographical distribution and network analysis of haplotypes. In a word, our study reveals repeated range expansions and inter/postglacial recolonization routes on the fragmented distribution pattern in China and resolves the refugia distributing in China and has also certain reference value for the protection of the medicinal plant P. ternata.

2.
J Econ Entomol ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39121382

RESUMO

The Mediterranean fruit fly (medfly), Ceratitis capitata (Wiedemann), one of the most important invasive pests of fresh fruits and vegetables from the coastal Mediterranean habitats, is expanding its current geographic distribution to cooler more temperate areas of Europe. Every year since 2010 the fly is detected in the area of Vienna, Austria. However, whether it can establish permanent populations is not known. In this current paper, the capacity of C. capitata to overwinter in Vienna, Austria (48.1° northern latitude) was studied over 2 consecutive winter seasons (2020-2022). Overwintering trials with different life stages (larva, pupa, and adult) of C. capitata were performed in the open field and in the protected environment of a basement without a heating system. Control flies were kept under constant conditions in a climate chamber (25 °C, 60% RH, 14:10 L:D). Our data showed that no life stage of the Mediterranean fruit fly was able to survive the Austrian winter in the open field. However, in the protected environment C. capitata outlived the winter months in all studied life stages at least in small numbers and several surviving females were able to lay eggs at the time of the following fruiting season. Implications of these findings for the ongoing geographic range expansion of the pest in temperate European countries are discussed.

3.
Mol Ecol ; : e17511, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39215560

RESUMO

Signals of natural selection can be quickly eroded in high gene flow systems, curtailing efforts to understand how and when genetic adaptation occurs in the ocean. This long-standing, unresolved topic in ecology and evolution has renewed importance because changing environmental conditions are driving range expansions that may necessitate rapid evolutionary responses. One example occurs in Kellet's whelk (Kelletia kelletii), a common subtidal gastropod with an ~40- to 60-day pelagic larval duration that expanded their biogeographic range northwards in the 1970s by over 300 km. To test for genetic adaptation, we performed a series of experimental crosses with Kellet's whelk adults collected from their historical (HxH) and recently expanded range (ExE), and conducted RNA-Seq on offspring that we reared in a common garden environment. We identified 2770 differentially expressed genes (DEGs) between 54 offspring samples with either only historical range (HxH offspring) or expanded range (ExE offspring) ancestry. Using SNPs called directly from the DEGs, we assigned samples of known origin back to their range of origin with unprecedented accuracy for a marine species (92.6% and 94.5% for HxH and ExE offspring, respectively). The SNP with the highest predictive importance occurred on triosephosphate isomerase (TPI), an essential metabolic enzyme involved in cold stress response. TPI was significantly upregulated and contained a non-synonymous mutation in the expanded range. Our findings pave the way for accurately identifying patterns of dispersal, gene flow and population connectivity in the ocean by demonstrating that experimental transcriptomics can reveal mechanisms for how marine organisms respond to changing environmental conditions.

4.
Cell Rep ; 43(9): 114653, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39213158

RESUMO

Surface-associated microbial systems are hotspots for the spread of plasmid-encoded antibiotic resistance, but how surface association affects plasmid transfer and proliferation remains unclear. Surface association enables prolonged spatial proximities between different populations, which promotes plasmid transfer between them. However, surface association also fosters strong metabolic interactions between different populations, which can direct their spatial self-organization with consequences for plasmid transfer and proliferation. Here, we hypothesize that metabolic interactions direct the spatial self-organization of different populations and, in turn, regulate the spread of plasmid-encoded antibiotic resistance. We show that resource competition causes populations to spatially segregate, which represses plasmid transfer. In contrast, resource cross-feeding causes populations to spatially intermix, which promotes plasmid transfer. We further show that the spatial positionings that emerge from metabolic interactions determine the proliferation of plasmid recipients. Our results demonstrate that metabolic interactions are important regulators of both the transfer and proliferation of plasmid-encoded antibiotic resistance.

5.
Proc Natl Acad Sci U S A ; 121(34): e2411487121, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39136984

RESUMO

When biological populations expand into new territory, the evolutionary outcomes can be strongly influenced by genetic drift, the random fluctuations in allele frequencies. Meanwhile, spatial variability in the environment can also significantly influence the competition between subpopulations vying for space. Little is known about the interplay of these intrinsic and extrinsic sources of noise in population dynamics: When does environmental heterogeneity dominate over genetic drift or vice versa, and what distinguishes their population genetics signatures? Here, in the context of neutral evolution, we examine the interplay between a population's intrinsic, demographic noise and an extrinsic, quenched random noise provided by a heterogeneous environment. Using a multispecies Eden model, we simulate a population expanding over a landscape with random variations in local growth rates and measure how this variability affects genealogical tree structure, and thus genetic diversity. We find that, for strong heterogeneity, the genetic makeup of the expansion front is to a great extent predetermined by the set of fastest paths through the environment. The landscape-dependent statistics of these optimal paths then supersede those of the population's intrinsic noise as the main determinant of evolutionary dynamics. Remarkably, the statistics for coalescence of genealogical lineages, derived from those deterministic paths, strongly resemble the statistics emerging from demographic noise alone in uniform landscapes. This cautions interpretations of coalescence statistics and raises new challenges for inferring past population dynamics.


Assuntos
Dinâmica Populacional , Modelos Genéticos , Deriva Genética , Genética Populacional/métodos , Variação Genética , Frequência do Gene , Humanos , Evolução Biológica
6.
J Med Entomol ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39021151

RESUMO

Haemaphysalis longicornis (Neumann) was first established in New Jersey and has rapidly spread across most of the eastern United States. This tick has the potential to infest a wide variety of hosts and can reproduce quickly via parthenogenesis, presenting a new threat to animal health. Here we report the first record of a single H. longicornis tick in Mecklenburg County, Virginia, from incidental field collections of ticks. In addition to H. longicornis, we collected 787 Amblyomma americanum, 25 Dermacentor variabilis, 6 Ixodes affinis, 1 Haemaphysalis leporispalustris, and 1 Amblyomma maculatum using standard dragging and flagging techniques. The expansion of H. longicornis will have economic consequences for livestock producers in south-central Virginia, who must now manage this species. Enhanced surveillance is needed to fully understand its growing geographic distribution in the United States and the subsequent consequences of its spread.

7.
R Soc Open Sci ; 11(7): 240493, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39076365

RESUMO

Historically, anecdotal observations support the likelihood of human-assisted invasive insect dispersal to new environments. No previous studies have investigated the ability of insects to remain attached to moving vehicles; however, such information is critical for prioritizing research, mitigation activities and understanding anthropogenic effects on biotic communities. Lycorma delicatula (White), spotted lanternfly (SLF), an invasive insect whose range is currently expanding throughout the United States, is commonly observed in urban settings and near transportation hubs. We developed a novel method to test SLF's ability to remain on vehicle surfaces including bonnet, nose wing, windscreen, wipers and scuttle panel using laminar wind flow from 0 to 100 ± 5 km h-1. We found all mobile life stages (nymphs and adults) could remain on the vehicle up to 100 km h-1. First instar nymphs and early season adults remained attached at significantly higher wind speeds than other stages. A brief acclimatization period prior to wind delivery increased attachment duration for all life stages except later season adults. The importance of outliers in the success of invasive species is well established. Given these results, any hitchhiking SLF could potentially establish incipient populations. This methodology will be beneficial for exploring human-assisted dispersal of other invasive arthropods.

8.
Ecol Lett ; 27(7): e14472, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39011649

RESUMO

Rapid evolution of increased dispersal at the edge of a range expansion can accelerate invasions. However, populations expanding across environmental gradients often face challenging environments that reduce fitness of dispersing individuals. We used an eco-evolutionary model to explore how environmental gradients influence dispersal evolution and, in turn, modulate the speed and predictability of invasion. Environmental gradients opposed evolution of increased dispersal during invasion, even leading to evolution of reduced dispersal along steeper gradients. Counterintuitively, reduced dispersal could allow for faster expansion by minimizing maladaptive gene flow and facilitating adaptation. While dispersal evolution across homogenous landscapes increased both the mean and variance of expansion speed, these increases were greatly dampened by environmental gradients. We illustrate our model's potential application to prediction and management of invasions by parameterizing it with data from a recent invertebrate range expansion. Overall, we find that environmental gradients strongly modulate the effect of dispersal evolution on invasion trajectories.


Assuntos
Distribuição Animal , Evolução Biológica , Espécies Introduzidas , Modelos Biológicos , Animais , Meio Ambiente , Dinâmica Populacional , Ecossistema , Invertebrados/fisiologia
9.
J Comp Physiol B ; 194(4): 545-554, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38953915

RESUMO

Individuals colonizing new areas at expanding ranges encounter numerous and unpredictable stressors. Exposure to unfamiliar environments suggests that colonists would differ in stress levels from residents living in familiar conditions. Few empirical studies tested this hypothesis and produced mixed results, and the role of stress regulation in colonization remains unclear. Studies relating stress levels to colonization mainly use a geographical analysis comparing established colonist populations with source populations. We used faecal glucocorticoid metabolites (FGMs) to assess both spatial and temporal dynamics of stress levels in an expanding population of midday gerbils (Meriones meridianus). We demonstrated that adult males and females had higher FGM levels in newly emerged colonies, compared with the source population, but differed in the pattern of FGM dynamics post-foundation. In males, FGM levels sharply decreased in the second year after colony establishment. In females, FGM levels did not change with time and remained high despite the decreasing environmental unpredictability, exhibiting among-individual variation. Increased stress levels of colonist males damping with time post-colonization suggest they are flexible in responding to immediate changes in environmental uncertainty. On the contrary, high and stable over generations stress levels uncoupled from the changes in the environmental uncertainty in female colonists imply that they carry a relatively constant phenotype associated with the reactive coping strategy favouring colonization. We link sex differences in consistency and plasticity in stress regulation during colonization to the sex-specific life-history strategies.


Assuntos
Fezes , Gerbillinae , Glucocorticoides , Estresse Fisiológico , Animais , Feminino , Masculino , Fezes/química , Glucocorticoides/metabolismo , Gerbillinae/fisiologia , Estresse Fisiológico/fisiologia , Fatores Sexuais , Caracteres Sexuais , Fatores de Tempo
10.
Sci Rep ; 14(1): 17587, 2024 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080378

RESUMO

The distribution of a species reflects its ecological adaptability and evolutionary history, which is shaped by the environment and represents a dynamic area subject to anthropogenic environmental change. We used the MaxEnt algorithm to construct ecological niche models for four thrush species within the Turdus genus; T. amaurochalinus, T. chiguanco, T. falcklandii and T. rufiventris. These models were used to predict the potential geographic distributions of these species that are expanding their ranges in South America. Using occurrence records, we estimated currently occupied areas for each species. We also identified suitable habitats and projected possible areas to be colonized by the four species at continental scale. Temperature annual range had the highest influence for T. falcklandii, while human modification was the main variable explaining the distribution of the other three species. The potential distribution area ranged from 2.5 million km2 for T. falcklandii to nearly seven million km2 for T. amaurochalinus. Large proportions of suitable area remain unoccupied by all four species, being 50% for T. amaurochalinus and T. rufiventris, and about 70% for T. chiguanco and T. falcklandii. Anthropogenic disturbances, such as habitat loss and ecosystem transformation, lead to non-random species extinction and biotic homogenization, highlighting the importance of predictive models as valuable tools for informing mitigation policies and conservation strategies. Thrushes are progressively expanding their ranges, and the colonization of new habitats could bring new challenges.


Assuntos
Ecossistema , América do Sul , Animais , Conservação dos Recursos Naturais , Aves Canoras/fisiologia , Distribuição Animal
11.
Mol Ecol ; 33(16): e17480, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39034651

RESUMO

Recent changes in climate and human land-use have resulted in alterations of the geographic range of many species, including human pathogens. Geographic range expansion and population growth of human pathogens increase human disease risk. Relatively little empirical work has investigated the impact of range changes on within-population variability, a contributor to both colonization success and adaptive potential, during the precise time in which populations are colonized. This is likely due to the difficulties of collecting appropriate natural samples during the dynamic phase of migration and colonization. We systematically collected blacklegged ticks (Ixodes scapularis) across New York State (NY), USA, between 2006 and 2019, a time period coinciding with a rapid range expansion of ticks and their associated pathogens including Borrelia burgdorferi, the etiological agent of Lyme disease. These samples provide a unique opportunity to investigate the population dynamics of human pathogens as they expand into novel territory. We observed that founder effects were short-lived, as gene flow from long-established populations brought almost all B. burgdorferi lineages to newly colonized populations within just a few years of colonization. By 7 years post-colonization, B. burgdorferi lineage frequency distributions were indistinguishable from long-established sites, indicating that local B. burgdorferi populations experience similar selective pressures despite geographic separation. The B. burgdorferi lineage dynamics elucidate the processes underlying the range expansion and demonstrate that migration into, and selection within, newly colonized sites operate on different time scales.


Assuntos
Borrelia burgdorferi , Fluxo Gênico , Ixodes , Doença de Lyme , Dinâmica Populacional , Borrelia burgdorferi/genética , Borrelia burgdorferi/patogenicidade , New York , Animais , Doença de Lyme/microbiologia , Doença de Lyme/transmissão , Ixodes/microbiologia , Humanos , Genética Populacional
12.
Curr Zool ; 70(3): 320-331, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39035766

RESUMO

Whether introduced into a completely novel habitat or slowly expanding their current range, the degree to which animals can efficiently explore and navigate new environments can be key to survival, ultimately determining population establishment and colonization success. We tested whether spatial orientation and exploratory behavior are associated with non-native spread in free-living bank voles (Myodes glareolus, N = 43) from a population accidentally introduced to Ireland a century ago. We measured spatial orientation and navigation in a radial arm maze, and behaviors associated to exploratory tendencies and risk-taking in repeated open-field tests, at the expansion edge and in the source population. Bank voles at the expansion edge re-visited unrewarded arms of the maze more, waited longer before leaving it, took longer to start exploring both the radial arm maze and the open field, and were more risk-averse compared to conspecifics in the source population. Taken together, results suggest that for this small mammal under heavy predation pressure, a careful and thorough exploration strategy might be favored when expanding into novel environments.

13.
Sci Rep ; 14(1): 17038, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39048619

RESUMO

Securely dated archaeological sites from key regions and periods are critical for understanding early modern human adaptive responses to past environmental change. Here, we report new radiocarbon dates of > 42,000 cal years BP for an intensive human occupation of Gorgora rockshelter in the Ethiopian Highlands. We also document the development of innovative technologies and symbolic behaviors starting around this time. The evidenced occupation and behavioral patterns coincide with the onset and persistence of a stable wet phase in the geographically proximate high-resolution core record of Lake Tana. Range expansion into montane habitats and the subsequent development of innovative technologies and behaviors are consistent with population dispersal waves within Africa and beyond during wetter phases ~ 60-40 thousand years ago (ka).

14.
Genes (Basel) ; 15(6)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38927587

RESUMO

Landscapes are consistently under pressure from human-induced ecological change, often resulting in shifting species distributions. For some species, changing the geographical breadth of their niche space results in matching range shifts to regions other than those in which they are formally found. In this study, we employ a population genomics approach to assess potential conservation issues arising from purported range expansions into the south Texas Brush Country of two sister species of ducks: mottled (Anas fulvigula) and Mexican (Anas diazi) ducks. Specifically, despite being non-migratory, both species are increasingly being recorded outside their formal ranges, with the northeastward and westward expansions of Mexican and mottled ducks, respectively, perhaps resulting in secondary contact today. We assessed genetic ancestry using thousands of autosomal loci across the ranges of both species, as well as sampled Mexican- and mottled-like ducks from across overlapping regions of south Texas. First, we confirm that both species are indeed expanding their ranges, with genetically pure Western Gulf Coast mottled ducks confirmed as far west as La Salle county, Texas, while Mexican ducks recorded across Texas counties near the USA-Mexico border. Importantly, the first confirmed Mexican × mottled duck hybrids were found in between these regions, which likely represents a recently established contact zone that is, on average, ~100 km wide. We posit that climate- and land use-associated changes, including coastal habitat degradation coupled with increases in artificial habitats in the interior regions of Texas, are facilitating these range expansions. Consequently, continued monitoring of this recent contact event can serve to understand species' responses in the Anthropocene, but it can also be used to revise operational survey areas for mottled ducks.


Assuntos
Patos , Hibridização Genética , Animais , Patos/genética , Texas , Humanos , México
15.
Parasitol Res ; 123(6): 233, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38850488

RESUMO

Enterocytozoon bieneusi is a common cause of human microsporidiosis and can infect a variety of animal hosts worldwide. In Thailand, previous studies have shown that this parasite is common in domestic animals. However, information on the prevalence and genotypes of this parasite in other synanthropic wildlife, including bats, remains limited. Several pathogens have been previously detected in bats, suggesting that bats may serve as a reservoir for this parasite. In this study, a total of 105 bat guano samples were collected from six different sites throughout Thailand. Of these, 16 from Chonburi (eastern), Ratchaburi (western), and Chiang Rai (northern) provinces tested positive for E. bieneusi, representing an overall prevalence of 15.2%. Based on ITS1 sequence analysis, 12 genotypes were identified, including two known genotypes (D and type IV) frequently detected in humans and ten novel potentially zoonotic genotypes (TBAT01-TBAT10), all belonging to zoonotic group 1. Lyle's flying fox (Pteropus lylei), commonly found in Southeast Asia, was identified as the host in one sample that was also positive for E. bieneusi. Network analysis of E. bieneusi sequences detected in this study and those previously reported in Thailand also revealed intraspecific divergence and recent population expansion, possibly due to adaptive evolution associated with host range expansion. Our data revealed, for the first time, multiple E. bieneusi genotypes of zoonotic significance circulating in Thai bats and demonstrated that bat guano fertilizer may be a vehicle for disease transmission.


Assuntos
Quirópteros , Enterocytozoon , Genótipo , Microsporidiose , Filogenia , Quirópteros/parasitologia , Quirópteros/microbiologia , Animais , Tailândia/epidemiologia , Enterocytozoon/genética , Enterocytozoon/isolamento & purificação , Enterocytozoon/classificação , Microsporidiose/veterinária , Microsporidiose/epidemiologia , Microsporidiose/microbiologia , Prevalência , Humanos , Análise de Sequência de DNA , Zoonoses/parasitologia , DNA Espaçador Ribossômico/genética , DNA Fúngico/genética
16.
Evol Appl ; 17(6): e13740, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38911265

RESUMO

Biological invasion consists of spatially and temporally varying stages, accompanied by ecological and evolutionary changes. Understanding the genomics underlying invasion dynamics provides critical insights into the geographic sources and genetic diversity, contributing to successful invasions across space and time. Here, we used genomic data and model-based approaches to characterize the invasion dynamics of Hypochaeris radicata L., a noxious weed in Korea. Genetic diversity and assignment patterns were investigated using 3563 SNPs of 283 individuals sampled from 22 populations. We employed a coalescent-based simulation method to estimate demographic changes for each population and inferred colonization history using both phylogenetic and population genetic model-based approaches. Our data suggest that H. radicata has been repeatedly been introduced to Korea from multiple genetic sources within the last 50 years, experiencing weak population bottlenecks followed by subsequent population expansions. These findings highlight the potential for further range expansion, particularly in the presence of human-mediated dispersal. Our study represents the first population-level genomic research documenting the invasion dynamics of the successful worldwide invader, H. radicata, outside of Europe.

17.
Glob Chang Biol ; 30(6): e17353, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38837850

RESUMO

Rapid climate change is altering Arctic ecosystems at unprecedented rates. These changes in the physical environment may open new corridors for species range expansions, with substantial implications for subsistence-dependent communities and sensitive ecosystems. Over the past 20 years, rising incidental harvest of Pacific salmon by subsistence fishers has been monitored across a widening range spanning multiple land claim jurisdictions in Arctic Canada. In this study, we connect Indigenous and scientific knowledges to explore potential oceanographic mechanisms facilitating this ongoing northward expansion of Pacific salmon into the western Canadian Arctic. A regression analysis was used to reveal and characterize a two-part mechanism related to thermal and sea-ice conditions in the Chukchi and Beaufort seas that explains nearly all of the variation in the relative abundance of salmon observed within this region. The results indicate that warmer late-spring temperatures in a Chukchi Sea watch-zone and persistent, suitable summer thermal conditions in a Beaufort Sea watch-zone together create a range-expansion corridor and are associated with higher salmon occurrences in subsistence harvests. Furthermore, there is a body of knowledge to suggest that these conditions, and consequently the presence and abundance of Pacific salmon, will become more persistent in the coming decades. Our collaborative approach positions us to document, explore, and explain mechanisms driving changes in fish biodiversity that have the potential to, or are already affecting, Indigenous rights-holders in a rapidly warming Arctic.


Assuntos
Mudança Climática , Animais , Regiões Árticas , Canadá , Salmão/fisiologia , Temperatura , Distribuição Animal , Ecossistema , Estações do Ano
18.
Zookeys ; 1203: 131-158, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38855794

RESUMO

The Vaupés River stands out as one of the few within the Amazon basin due to its numerous rapids. These riverine fast-flowing sections not only provide habitat to highly specialized fishes but also function as natural barriers hindering the movement of fish along its course. During a fish-collecting expedition in the lower Vaupés River basin in Colombia, 95 species were registered belonging to 30 families and seven orders. Despite recent inventories in the region, our comprehensive sampling efforts particularly focused on the rapids and associated rheophilic fauna, allowing us to contribute the first records of four fish species in Colombia (Mylopluslucienae Andrade, Ota, Bastos & Jégu, 2016, Tometesmakue Jégu, Santos & Jégu, 2002, also first record of the genus, Leptodoraspraelongus (Myers & Weitzman, 1956), and Eigenmanniamatintapereira Peixoto, Dutra & Wosiacki, 2015) and six presumably undescribed species (i.e., Jupiaba sp., Moenkhausia sp., Phenacogaster sp., Bunocephalus sp., Hemiancistrus sp., and Archolaemus sp.). In this study, a commented list of the ichthyofauna of these environments is presented, as well as a photographic catalog of fish species integrated into the CaVFish Project - Colombia.

19.
Ann Bot ; 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38824400

RESUMO

BACKGROUND AND AIMS: Pleistocene climatic oscillations, characterized by arid (interglacial) and pluvial (glacial) phases, have profoundly impacted the floras of Mediterranean climates. Our study investigates the hypothesis that these climatic extremes have promoted phases of range expansion and contraction in the Eriosyce sect. Neoporteria, resulting in pronounced genetic structuring and restricted gene flow. METHODS: Utilizing nuclear microsatellite markers, we genotyped 251 individuals across 18 populations, encompassing all 14 species and one subspecies within the Eriosyce sect. Neoporteria. Additionally, Species Distribution Models (SDMs) were employed to reconstruct past (Last Interglacial, Last Glacial Maximum, Mid-Holocene) and current potential distribution patterns, aiming to delineate the climatic influences on species' range dynamics. KEY RESULTS: The gene flow analysis disclosed disparate levels of genetic interchange among species, with marked restrictions observed between entities that are geographically or ecologically separated. Notably, E. subgibbosa from Hualpen emerged as genetically distinct, warranting its exclusion for clearer genetic clustering into north, central, and south clusters. The SDMs corroborated these findings, showing marked range expansions during warmer periods and contractions during colder times, indicating significant shifts in distribution patterns in response to climatic changes. CONCLUSIONS: Our findings emphasize the critical role of Pleistocene climatic fluctuations in driving the dynamic patterns of range expansions and contractions that have led to geographic isolation and speciation within the Eriosyce sect. Neoporteria. Even in the face of ongoing gene flow, these climate-driven processes have played a pivotal role in sculpting the species' genetic architecture and diversity. This study elucidates the complex interplay between climatic variability and evolutionary dynamics among Mediterranean cacti in central Chile, highlighting the necessity of considering historical climatic millenial oscillations in conservation and evolutionary biology studies.

20.
J Wildl Dis ; 60(3): 758-762, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38757151

RESUMO

The nine-banded armadillo (Dasypus novemcinctus) is currently considered an invasive species in parts of its range in the USA, and this range continues to expand to the north and east. Nine-banded armadillos are one of a handful of mammals known to contract leprosy (also known as Hansen's disease); range expansion thus leads to public health concerns about whether this might increase human exposure to infected animals. We collected blood samples from 61 road-killed armadillos over two summers (2021 and 2022) in Tennessee, a US state near the northern extreme of the species' current range, and screened them for exposure to Mycobacterium leprae, the causative agent of leprosy. All animals were seronegative, providing no evidence that range expansion is increasing the distribution of leprosy in the US.


Assuntos
Tatus , Hanseníase , Mycobacterium leprae , Animais , Tatus/microbiologia , Hanseníase/veterinária , Hanseníase/epidemiologia , Tennessee/epidemiologia , Estudos Soroepidemiológicos , Mycobacterium leprae/imunologia , Feminino , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA