RESUMO
Some sulfate-reducing bacteria (SRB), mainly belonging to the Desulfovibrionaceae family, have evolved the capability to conserve energy through microbial extracellular electron transfer (EET), suggesting that this process may be more widespread than previously believed. While previous evidence has shown that mobile genetic elements drive the plasticity and evolution of SRB and iron-reducing bacteria (FeRB), few have investigated the shared molecular mechanisms related to EET. To address this, we analyzed the prevalence and abundance of EET elements and how they contributed to their differentiation among 42 members of the Desulfovibrionaceae family and 23 and 59 members of Geobacteraceae and Shewanellaceae, respectively. Proteins involved in EET, such as the cytochromes PpcA and CymA, the outer membrane protein OmpJ, and the iron-sulfur cluster-binding CbcT, exhibited widespread distribution within Desulfovibrionaceae. Some of these showed modular diversification. Additional evidence revealed that horizontal gene transfer was involved in the acquiring and losing of critical genes, increasing the diversification and plasticity between the three families. The results suggest that specific EET genes were widely disseminated through horizontal transfer, where some changes reflected environmental adaptations. These findings enhance our comprehension of the evolution and distribution of proteins involved in EET processes, shedding light on their role in iron and sulfur biogeochemical cycling.
RESUMO
The establishment of sulfate (SO42-) reduction during methanogenesis may considerably hinder the efficient energetic exploitation of methane, once removing sulfide from biogas is obligate and can be costly. In addition, sulfide generation can negatively impact the performance of methanogens by triggering substrate competition and sulfide inhibition. This study investigated the impacts of removing SO42- during fermentation on the performance of a second-stage methanogenic continuous reactor (R2), comparing the results with those obtained in a single-stage system (R1) fed with SO42--rich wastewater (SO42- of up to 400 mg L-1, COD/SO42- of 3.12-12.50). The organic load (OL) was progressively increased to 5.0 g COD d-1 in both reactors, showing completely discrepant performances. Sulfate-reducing bacteria outperformed methanogens in the consumption for organic matter during the start-up phase (OL = 2.5 g COD d-1) in R1, directing up to 73% of the electron flow to SO42- reduction. An efficient methanogenic activity was established in R1 only after decreasing the OL to 0.625 g COD d-1, after which methanogenesis prevailed by consuming ca. 90% of the removed COD. Nevertheless, high sulfide proportions (up to 3.1%) were measured in biogas. Conversely, methanogenesis was promptly established in R2, resulting in a methane-rich (> 80%) and sulfide-free biogas regardless of the operating condition. From an economic perspective, processing the biogas evolved from R2 would be cheaper, although the techno-economic impacts of managing the sulfur pollution in the fermentative reactor still need to be understood.
Assuntos
Reatores Biológicos , Metano , Sulfetos , Metano/metabolismo , Águas Residuárias/química , Sulfatos/metabolismo , Separação de FasesRESUMO
Sugarcane vinasse exits the distillation process at high temperatures, which may differ from the optimal temperatures for dark fermentation and anaerobic digestion. A 15 °C temperature increase, for example, stops sugarcane vinasse methane generation, making distillery vinasse digestion complicated. Conversely, in other aspects, co-digesting vinasse and glycerol has been proven to stabilize methane production from vinasse because of sulfate dilution. However, glycerol has not been tested to stabilize vinasse digestion under temperature changes. Thus, this study compared the effects of different temperature settings on the co-digestion of 10 g COD L-1 of vinasse and glycerol (50 %:50 % on a COD basis) in anaerobic fluidized bed reactors (AFBR), i.e., an acidogenic and a methanogenic one-stage AFBRs operated at 55, 60, and 65 °C, and two methanogenic AFBRs fed both with acidogenic effluent (one operated at room temperature (25 °C) and the other at 55, 60, and 65 °C). The co-digestion provided steady methane generation at all AFBRs, with methane production rates ranging from 2.27 to 2.93 L CH4 d-1 L-1, whether in one or two stages. A feature of this research was to unravel the black box of the role of sulfate in the digestion of sugarcane vinasse, which was rarely studied. Desulfovibrio was the primary genus degrading 1,3-propanediol into 3-hydroxypropanoate after genome sequencing. Phosphate acetyltransferase (EC: 2.3.1.8, K00625) and acetate kinase (EC: 2.7.2.1, K00925) genes were also found, suggesting propionate was metabolized. In practical aspects, regarding the two-stage systems, the thermophilic-mesophilic (acidogenic-methanogenic) configuration is best for extracting additional value-added products because 1,3-propanediol may be recovered at high yields with steady methane production at reduced energy expenditure in a reactor operated at room temperature. However, the one-stage design is best for methane generation per system volume since it remained stable with rising temperatures, and all systems presented similar methane production rates.
Assuntos
Reatores Biológicos , Saccharum , Saccharum/metabolismo , Glicerol , Anaerobiose , Metano/metabolismo , SulfatosRESUMO
AIMS: The aim was to develop an electrochemical/optical set-up and correlate it (as validation) with other chemical and physical methods to obtain a simple and cost-effective system to study biofilm formation. METHODS AND RESULTS: A simple microfluidic cell and methods allowed continuous monitoring of the first, critical steps of microbial attachment. We monitored sulfate-reducing bacteria (SRB) at the early stages of biofilm formation. Herein, we studied the formation and adherence of SRB consortium biofilms over an indium tin oxide (ITO) conducting surface using microbiological and chemical methods, microscopic observations [scanning electron microscopy (SEM) and optical], and electrochemical impedance spectroscopy (EIS) measurements. The SRB biofilm formation was evaluated for 30 d by SEM and EIS. Charge transfer resistance decreased when the microbial population colonized the electrode. The monitoring of early-stage biofilm formation was performed using EIS at a single frequency of 1 Hz during the first 36 h. CONCLUSIONS: The simultaneous use of optical, analytical, and microbiological methods allowed us to connect the kinetics of the growth of the microbial consortium to the values obtained via the electrochemical technique. The simple setup we present here can help laboratories with limited resources to study biofilm attachment and facilitates the development of various strategies to control biofilm development in order to avoid damage to metallic structures (microbiologically influenced corrosion, MIC) or the colonization of other industrial structures and medical devices.
Assuntos
Biofilmes , Indicadores e Reagentes/farmacologia , Eletrodos , CorrosãoRESUMO
This study aimed to compare microscopic counting, culture, and quantitative or real-time PCR (qPCR) to quantify sulfate-reducing bacteria in environmental and engineered sludge samples. Four sets of primers that amplified the dsrA and apsA gene encoding the two key enzymes of the sulfate-reduction pathway were initially tested. qPCR standard curves were constructed using genomic DNA from an SRB suspension and dilutions of an enriched sulfate-reducing sludge. According to specificity and reproducibility, the DSR1F/RH3-dsr-R primer set ensured a good quantification based on dsrA gene amplification; however, it exhibited inconsistencies at low and high levels of SRB concentrations in environmental and sulfate-reducing sludge samples. Ultimately, we conducted a qPCR method normalized to dsrA gene copies, using a synthetic double-stranded DNA fragment as a calibrator. This method fulfilled all validation criteria and proved to be specific, accurate, and precise. The enumeration of metabolically active SRB populations through culture methods differed from dsrA gene copies but showed a plausible positive correlation. Conversely, microscopic counting had limitations due to distinguishing densely clustered organisms, impacting precision. Hence, this study proves that a qPCR-based method optimized with dsrA gene copies as a calibrator is a sensitive molecular tool for the absolute enumeration of SRB populations in engineered and environmental sludge samples.
RESUMO
Sulfate-rich effluents have been successfully treated in anaerobic reactors using sulfate-reducing bacteria (SRB). Many authors have demonstrated that these systems require nitrogen and phosphorous supplementation to achieve high sulfate removal rates. However, the resource ratio theory assumes that some species can be dominant according to the nutritional relations used or even without external nutrient supplementation. Thus, this study evaluated the SRB communities in batch reactors without external nitrogen and phosphorus sources based on most probable number (MPN) quantification, denaturing gradient gel electrophoresis (DGGE) analyses and sequencing. The sulfate and chemical oxygen demand (COD) removal and kinetic parameters were also determined. After 100 days of operation, the sulfate and COD removal achieved 71.8 ± 10% and 86.5 ± 10%, respectively. The SRB population increased from 8.106 to 4 × 1012 MPN 100 mL-1, and the richness of SRB bands was much higher at the end of the experiment compared to the inoculum. In addition, the sequenced bands from SRB-DGGE showed similarities to Desulfacinum infernum, Desulfobulbus sp, Syntrophobacter and Desulfomicrobium aestuarii-related sequences. Therefore, biological treatment of acid mine drainage wastewater was effective in the absence of nutrients, lowering costs and providing high sulfate removal efficiency.
Assuntos
Nitrogênio , Sulfatos , Sulfatos/química , Anaerobiose , Reatores Biológicos/microbiologia , Águas Residuárias , FósforoRESUMO
A novel interdomain consortium composed of a methanogenic Archaeon and a sulfate-reducing bacterium was isolated from a microbial biofilm in an oil well in Cahuita National Park, Costa Rica. Both organisms can be grown in pure culture or as stable co-culture. The methanogenic cells were non-motile rods producing CH4 exclusively from H2/CO2. Cells of the sulfate-reducing partner were motile rods forming cell aggregates. They utilized hydrogen, lactate, formate, and pyruvate as electron donors. Electron acceptors were sulfate, thiosulfate, and sulfite. 16S rRNA sequencing revealed 99% gene sequence similarity of strain CaP3V-M-L2AT to Methanobacterium subterraneum and 98.5% of strain CaP3V-S-L1AT to Desulfomicrobium baculatum. Both strains grew from 20 to 42 °C, pH 5.0-7.5, and 0-4% NaCl. Based on our data, type strains CaP3V-M-L2AT (= DSM 113354 T = JCM 39174 T) and CaP3V-S-L1AT (= DSM 113299 T = JCM 39179 T) represent novel species which we name Methanobacterium cahuitense sp. nov. and Desulfomicrobium aggregans sp. nov.
Assuntos
Methanobacterium , Campos de Petróleo e Gás , Methanobacterium/genética , Costa Rica , RNA Ribossômico 16S/genética , Sulfatos/metabolismo , Filogenia , DNA Bacteriano/genética , Análise de Sequência de DNA , Ácidos GraxosRESUMO
Xichú River is a Mexican river located in an environmental preservation area called Sierra Gorda Biosphere Reserve. Around it, there are tons of abandoned mine residues that represent a serious environmental issue. Sediment samples of Xichú River, visibly contaminated by flows of an acid mine drainage, were collected to study their prokaryotic diversity. The study was based on both cultural and non-cultural approaches. The analysis of total 16S rRNA gene by MiSEQ sequencing allowed to identify 182 Operational Taxonomic Units. The community was dominated by Pseudomonadota, Bacteroidota, "Desulfobacterota" and Acidobacteriota (27, 21, 19 and 16%, respectively). Different culture conditions were used focusing on the isolation of anaerobic bacteria, including sulfate-reducing bacteria (SRB) and arsenate-reducing bacteria (ARB). Finally, 16 strains were isolated. Among them, 12 were phylogenetically identified, with two strains being SRB, belonging to the genus Solidesulfovibrio ("Desulfobacterota"), while ten are ARB belonging to the genera Azospira (Pseudomonadota), Peribacillus (Bacillota), Raineyella and Propionicimonas (Actinomycetota). The isolate representative of Raineyella genus probably corresponds to a new species, which, besides arsenate, also reduces nitrate, nitrite, and fumarate.
Assuntos
Arseniatos , Desulfovibrio , RNA Ribossômico 16S/genética , Rios/microbiologia , México , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Bactérias/genética , ÁcidosRESUMO
Molecular dynamics (MD) simulations were used to evaluate some chelating agents as potential candidates to inhibitors for dissimilatory adenosine-5'-phosphosulfate reductase (APSrAB). Molecular docking methods were used to evaluate the best binding modes of these molecules to the enzyme at two binding sites: of the substrate (enzyme active site) by mean the redocking protocol of substrate; and of one of the [Fe4S4]2+ groups by mean of the clusterization protocol. The best docking poses were selected by criteria such as low energy and RMSD (redocking) and the cluster with the higher number of similar poses (clusterization), which were submitted to MD simulations. RMSD, RDF, and hydrogen bonds results revelated that all ligands left the cube site, while in the active site, some ligands remained in their docking region, pointing to the enzyme active site as the best target for the selected ligands. The binding energy results of ligands hydroxamic acid (HXA) and catechol (CAT) showed that they bonded favorably to the enzyme and key residues of the active site contributed significantly to the protein-ligand bind, indicating HAX and CAT may compete with the substrate for interactions with these residues and displaying potential as candidates for experimental studies about APSrAB inhibitors.Communicated by Ramaswamy H. Sarma.
Assuntos
Simulação de Dinâmica Molecular , Oxirredutases , Simulação de Acoplamento Molecular , Ligantes , Ligação ProteicaRESUMO
Sulfate-reducing bioreactors are a biotechnological alternative for the treatment of acid mine drainage (AMD). In this study, two separate bioreactors with pH and temperature-controlled (Bio I and II) were operated with two different acidophilic microbial consortia to determine their efficiencies in sulfate removal from a synthetic acidic mine water. The bioreactors were operated for 302 days in continuous flow mode under the same parameters: fed with a sulfate solution of â¼30 mM with a pH of 2.5, the temperature at 30°C, stirred gently at 40 rpm and using a continuous stream of nitrogen to help remove the H2S produced in the bioreactor. The glycerol consumption, acetate production, and sulfate removal were monitored throughout the course of the experiment. The community composition and potential metabolic functional groups were analyzed via 16S rRNA partial gene sequencing. Bio I consortium reduced the sulfate, achieving a range of sulfate concentration from 4.7 to 19 mM in the effluent liquor. The removal of sulfate in Bio II was between 5.6 and 18 mM. Both bioreactors' communities showed the presence of the genus De sulfosporosinus as the main sulfate-reducing bacteria (SRB). Despite differences in microbial composition, both bioreactors have similar potential metabolism, with a higher percentage of microorganisms that can use sulfate in respiration. Overall, both bioreactors showed similar performance in treating acidic mine water containing mostly sulfate using two different acidophilic sulfidogenic consortia obtained from different global locations.
RESUMO
RESUMEN En esta investigación bibliográfica se encontraron reportes sobre una gran variedad de especies responsables de precipitar a cuatro metales de interés (Cu, Pb, Zn y Fe). En la mayoría de las investigaciones no solamente se considera la precipitación de estos metales, sino también la de otros elementos que están presentes en cada efluente estudiado. Los artículos aquí mencionados tienen una relación directa con el efluente proveniente de la operación unitaria de flotación. Aportan conocimiento acerca del proceso de sulfato-reducción, comprendiendo el mecanismo mediante microorganismos con características específicas, especialmente su versatilidad pues se desarrollan en diferentes ecosistemas. Se muestra que varias especies, como Desulfobacter o Desulfovibrio son comunes pues tienen condiciones relativamente sencillas para desarrollarse. Los microorganismos sulfato reductores (MSR) son eficientes para reducir la acidez del agua (de la operación unitaria de flotación de una mina, de cocinas, de corrientes marinas, etc.). También lo son para precipitar diferentes elementos pues no requieren de algún agente externo salvo en contadas ocasiones donde debe actuar un catalizador. Hay investigaciones sobre los nutrientes que deben adicionarse para incrementar su actividad. Los reportes de investigación revisados identificaron las variables a controlar para obtener buenos resultados en la remoción de metales y menores impactos en el ambiente. Es de gran importancia el desarrollo de proyectos que tomen en cuenta un sistema natural, como la degradación anaerobia, para alcanzar un punto en el cual la tecnología y el ambiente puedan complementarse logrando bienes de consumo necesarios para la población sin causar daños irreparables a la naturaleza.
ABSTRACT In this bibliographical research, reports were found on a great variety of species responsible for precipitating four metals of interest (Cu, Pb, Zn and Fe). In most of the investigations, not only the precipitation of these metals is considered, but also that of other elements that are present in each effluent studied. The items mentioned here have a direct relationship with the effluent from the flotation unit operation. They provide knowledge about the sulfate-reduction process, understanding the mechanism through microorganisms with specific characteristics, especially their versatility as they develop in different ecosystems. It is shown that several species, such as Desulfobacter or Desulfovibrio, are common because they have relatively simple conditions to develop. Sulfate-reducing microorganisms (SRM) are efficient in reducing the acidity of water (from the flotation unit operation of a mine, kitchens, ocean currents, etc.). They are also used to precipitate different elements since they do not require any external agent except on rare occasions when a catalyst must act. There is research on the nutrients that should be added to increase its activity. The research reports reviewed identified the variables to control to obtain good results in the removal of metals and less impact on the environment. The development of projects that take into account a natural system, such as anaerobic degradation, is of great importance in order to reach a point where technology and the environment can complement each other, achieving necessary consumer goods for the population without causing irreparable damage to nature.
RESUMO
Perchlorate is a widespread drinking water contaminant with regulatory standards ranging from 2 to 18 µg/L. The hydrogen-based membrane-biofilm reactor (MBfR) can effectively reduce perchlorate, but it is challenging to achieve low-µg/L levels. We explored chlorate addition to increase the abundance of perchlorate-reducing bacteria (PRB) and improve removals. MBfR reactors were operated with and without chlorate addition. Results show that chlorate doubled the abundance of putative PRB (e.g., Rhodocyclales) and improved perchlorate reduction to 23 ± 17 µg/L, compared to 53 ± 37 µg/L in the control. Sulfate reduction was substantially inhibited during chlorate addition, but quickly recovered once suspended. Our results suggest that chlorate addition can enhance perchlorate reduction by providing a selective pressure for PRB. It also decreases net sulfate reduction. KEY POINTS: ⢠Chlorate increased the abundance of perchlorate-reducing bacteria ⢠Chlorate addition improved perchlorate removal ⢠Chlorate appeared to suppress sulfate reduction.
Assuntos
Cloratos , Percloratos , Bactérias , Biofilmes , Hidrogênio , Oxirredução , SulfatosRESUMO
It is anticipated that copper mining output will significantly increase over the next 20 years because of the more intensive use of copper in electricity-related technologies such as for transport and clean power generation, leading to a significant increase in the impacts on water resources if stricter regulations and as a result cleaner mining and processing technologies are not implemented. A key concern of discarded copper production process water is sulfate. In this study we aim to transform sulfate into sulfur in real mining process water. For that, we operate a sequential 2-step membrane biofilm reactor (MBfR) system. We coupled a hydrogenotrophic MBfR (H2-MBfR) for sulfate reduction to an oxidizing MBfR (O2-MBfR) for oxidation of sulfide to elemental sulfur. A key process improvement of the H2-MBfR was online pH control, which led to stable high-rate sulfate removal not limited by biomass accumulation and with H2 supply that was on demand. The H2-MBfR easily adapted to increasing sulfate loads, but the O2-MBfR was difficult to adjust to the varying H2-MBfR outputs, requiring better coupling control. The H2-MBfR achieved high average volumetric sulfate reduction performances of 1.7-3.74 g S/m3-d at 92-97% efficiencies, comparable to current high-rate technologies, but without requiring gas recycling and recompression and by minimizing the H2 off-gassing risk. On the other hand, the O2-MBfR reached average volumetric sulfur production rates of 0.7-2.66 g S/m3-d at efficiencies of 48-78%. The O2-MBfR needs further optimization by automatizing the gas feed, evaluating the controlled removal of excess biomass and S0 particles accumulating in the biofilm, and achieving better coupling control between both reactors. Finally, an economic/sustainability evaluation shows that MBfR technology can benefit from the green production of H2 and O2 at operating costs which compare favorably with membrane filtration, without generating residual streams, and with the recovery of valuable elemental sulfur.
RESUMO
Biological treatment using sulfate-reducing bacteria (SRB) is a promising approach to remediate acid rock drainage (ARD). Our purpose was to assess the performance of a sequential system consisting of a limestone bed filter followed by a sulfate-reducing bioreactor treating synthetic ARD for 375 days and to evaluate changes in microbial composition. The treatment system was effective in increasing the pH of the ARD from 2.7 to 7.5 and removed total Cu(II) and Zn(II) concentrations by up to 99.8% and 99.9%, respectively. The presence of sulfate in ARD promoted sulfidogenesis and changed the diversity and structure of the microbial communities. Methansarcina spp. was the most abundant amplicon sequence variant (ASV); however, methane production was not detected. Biodiversity indexes decreased over time with the bioreactor operation, whereas SRB abundance remained stable. Desulfobacteraceae, Desulfocurvus, Desulfobulbaceae and Desulfovibrio became more abundant, while Desulfuromonadales, Desulfotomaculum and Desulfobacca decreased. Geobacter and Syntrophobacter were enriched with bioreactor operation time. At the beginning, ASVs with relative abundance <2% represented 65% of the microbial community and 21% at the end of the study period. Thus, the results show that the microbial community gradually lost diversity while the treatment system was highly efficient in remediating ARD.
Assuntos
Microbiota , Sulfatos , Reatores Biológicos/microbiologia , Carbonato de Cálcio , Cobre , Sulfatos/química , ZincoRESUMO
The competition between sulfate-reducing bacteria and methane-producing archaea has a major influence on organic matter removal, as well as the success of sulfidogenic systems. This study investigated the performance of six batch sulfidogenic reactors in response to different COD/sulfate ratios (1.0 and 2.0) and electron donors (cheese whey, ethanol, and sodium lactate) by evaluating the biochemical mechanisms of sulfate reduction, organic matter oxidation, and microbial structure modification. A COD/sulfate ratio of 1.0 resulted in high sulfidogenic activity for all electron donors, thereby achieving a nearly 80% sulfate removal. Lactate provided high sulfate removal rates at COD/sulfate ratios of 1.0 (80%) and 2.0 (90%). A COD/sulfate ratio of 2.0 decreased the sulfate removal rates by 25 and 28% when ethanol and cheese whey were used as substrates. The sulfate-reducing bacteria populations increased using ethanol and lactate at a COD/sulfate ratio of 1.0. Particularly, Desulfovibrio, Clostridium, and Syntrophobacter were predominant. Influent composition and COD/sulfate ratio influenced the relative abundance of the microbial communities. Therefore, controlling these parameters may facilitate the wastewater treatment with high sulfate levels through bacterial activity.
Assuntos
Reatores Biológicos , Ácido Láctico , Reatores Biológicos/microbiologia , Elétrons , Etanol , Sulfatos/química , Eliminação de Resíduos Líquidos/métodosRESUMO
Acid mine drainage (AMD) is the major effluent generated from metal and coal mines, causing serious ecological risks and degradation of aquatic habitats and surrounding soil quality. Biochemical passive reactors (BPRs) are an option for improving AMD affected water. This study investigates the effect of the size and concentration of zerovalent iron nanoparticles (nZVI) on the efficiency of batch BPRs during AMD remediation. Atomic force microscopy (AFM) and transmission electron microscopy (TEM) were also used as complementary techniques for the investigation of the changes in microbial cells and nZVI properties after the AMD remediation. The results from the batch experiment showed that the concentration of nZVI increases the pH and decreases ORP during AMD treatment, thus favouring the removal of metals. The results also suggest that metal sulfide precipitation occurred in all the batch with reactive mixture but was greater in reactors amended with nZVI of larger size. This study revealed that the presence of nZVI in the BPR leads to metal removal as well as the inhibition of sulfate-reducing bacteria (SRB) activity. Microscopy study indicated that the addition of nZVI creates a morphological change on certain microorganisms in which the cellular membrane was fully covered with nZVI, inducing cell lysis process. These results show that nZVI is a promising reactive material for the treatment of AMD in BPR systems.
Assuntos
Nanopartículas , Poluentes Químicos da Água , Ácidos/química , Ferro/química , Metais , Mineração , Poluentes Químicos da Água/químicaRESUMO
Sulfate-reducing bacteria (SRB) can be used to remove metals from wastewater, sewage, and contaminated areas. However, metals can be toxic to this group of bacteria. Sediments from port areas present abundance of SRB and also metal contamination. Their microbial community has been exposed to metals and can be a good inoculum for isolation of metal-resistant SRB. The objective of the study was to analyze how metals influence activity and composition of sulfate-reducing bacteria. Enrichment cultures were prepared with a different metal (Zn, Cr, Cu, and Cd) range concentration tracking activity of SRB and 16S rRNA sequencing in order to access the community. The SRB activity decreased when there was an increase in the concentration of the metals tested. The highest concentration of metals precipitated were 0.2 mM of Cd, 5.4 mM of Zn, 4.5 mM of Cu, and 9.6 mM of Cr. The more toxic metals were Cd and Cu and had a greater community similarity with less SRB and more fermenters (e.g., Citrobacter and Clostridium). Meanwhile, the enrichments with less toxic metals (Cr and Zn) had more sequences affiliated to SRB genera (mainly Desulfovibrio). A new Desulfovibrio species was isolated. This type of study can be useful to understand the effects of metals in SRB communities and help to optimize wastewater treatment processes contaminated by metals. The new Desulfovibrio species may be important in future studies on bioremediation of neutral pH effluents contaminated by metals.
Assuntos
Desulfovibrio , Metais Pesados , Bactérias/genética , Brasil , RNA Ribossômico 16S/genética , SulfatosRESUMO
Successive years of gold mining in French Guiana has resulted in soil degradation and deforestation leading to the pollution and erosion of mining plots. Due to erosion and topography, gold panning sites are submitted to hydromorphy during rainfall and groundwater increases. This original study focused on characterizing the impact of hydromorphic anaerobic periods on bio-geochemical cycles. We sampled soil from five rehabilitated sites in French Guiana, including sites with herbaceous vegetation and sites restored with fabaceous plants, Clitoria racemosa (Cli) mon-oculture, Acacia mangium (Aca) monoculture, Clitoria racemosa and Acacia mangium (Mix) bi-culture. We conducted mesocosm experiments where soil samples were incubated in anaerobic conditions for 35 days. To evaluate the effect of anaerobic conditions on biogeochemical cycles, we measured the following parameters related to iron-reducing bacteria and sulfate-reducing bacteria metabolism throughout the experiment: CO2 release, carbon dissolution, sulphide production and sulphate mobilization. We also monitored the solubilization of iron oxyhydroxides, manganese oxides, aluminum oxides and mercury in the culture medium. Iron-reducing bacteria (IRB) and sulfate-reducing bacteria (SRB) are described as the major players in the dynamics of iron, sulfur and metal elements including mercury in tropical environments. The results revealed two trends in these rehabilitated sites. In the Aca and Mix sites, bacterial iron-reducing activity coupled with manganese solubilization was detected with no mercury solubilization. In herbaceous sites, a low anaerobic activity coupled with sulphide production and mercury solubilization were detected. These results are the first that report the presence and activity of iron- and sulfate-reductive communities at rehabilitated mining sites and their interactions with the dynamics of metallic elements and mercury. These results report, however, the positive impact of ecological restoration of mining sites in French Guiana by reducing IRB and SRB activities, the potential mobility of mercury and its risk of transfer and methylation.
RESUMO
An iron reducing enrichment was obtained from sulfate reducing sludge and was evaluated on the capability of reducing Fe3+ coupled to acetate oxidation in a microbial fuel cell (MFC). Three molar ratios for acetate/Fe3+ were evaluated (2/16, 3.4/27 and 6.9/55 mM). The percentages of Fe3+ reduction were in a range of 80-90, 60-70 and 40-50% for the MFCs at closed circuit for the molar ratios of 2/16, 3.4/27 and 6.9/55 mM, respectively. Acetate consumption was in a range of 80-90% in all cases. The results obtained at closed circuit for current density were: 11.37 mA/m2, 4.5 mA/m2 and 7.37 mA/m2 for the molar ratios of 2/16, 3.4/27 and 6.9/55 mM, respectively. Some microorganisms that were isolated and identified in the MFCs were Azospira oryzae, Cupriavidus metallidurans CH34, Enterobacter bugandensis 247BMC, Citrobacter freundii ATCC8090 and Citrobacter murliniae CDC2970-59, these bacteria have been reported as exoelectrogens in MFC and in MFC involving metals removal but not all of them have been reported to utilize acetate as preferred substrate. The results demonstrate that the isolates can utilize acetate as the sole source of carbon and suggest that Fe3+ reduction was carried out by a combination of different mechanisms (direct contact and redox mediators) utilized by the bacteria identified in the MFC. Storage of the energy generated from the 2/16 mM MFC system arranged in a series of three demonstrated that it is possible to utilize the energy to charge a battery.
Assuntos
Bactérias/classificação , Fontes de Energia Bioelétrica/microbiologia , Ferro/química , Análise de Sequência de RNA/métodos , Acetatos/metabolismo , Bactérias/genética , Bactérias/isolamento & purificação , Biodegradação Ambiental , DNA Bacteriano/genética , DNA Ribossômico/genética , Oxirredução , Polimorfismo de Fragmento de Restrição , RNA Ribossômico 16S/genética , Esgotos/microbiologiaRESUMO
Sulfate reducing prokaryotes (SRP) are a phylogenetically and physiologically diverse group of microorganisms that use sulfate as an electron acceptor. SRP have long been recognized as key players of the carbon and sulfur cycles, and more recently, they have been identified to play a relevant role as part of syntrophic and symbiotic relations and the human microbiome. Despite their environmental relevance, there is a poor understanding about the prevalence of prophages and CRISPR arrays and how their distribution and dynamic affect the ecological role of SRP. We addressed this question by analyzing the results of a comprehensive survey of prophages and CRISPR in a total of 91 genomes of SRP with several genotypic, phenotypic, and physiological traits, including genome size, cell volume, minimum doubling time, cell wall, and habitat, among others. Our analysis discovered 81 prophages in 51 strains, representing the 56% of the total evaluated strains. Prophages are non-uniformly distributed across the SRP phylogeny, where prophage-rich lineages belonged to Desulfovibrionaceae and Peptococcaceae. Furthermore, our study found 160 CRISPR arrays in 71 SRP, which is more abundant and widely spread than previously expected. Although there is no correlation between presence and abundance of prophages and CRISPR arrays at the strain level, our analysis showed that there is a directly proportional relation between cellular volumes and number of prophages per cell. This result suggests that there is an additional selective pressure for strains with smaller cells to get rid of foreign DNA, such as prophages, but not CRISPR, due to less availability of cellular resources. Analysis of the prophage genes encoding viral structural proteins reported that 44% of SRP prophages are classified as Myoviridae, and comparative analysis showed high level of homology, but not synteny, among prophages belonging to the Family Desulfovibrionaceae. We further recovered viral-like particles and structures that resemble outer membrane vesicles from D. vulgaris str. Hildenborough. The results of this study improved the current understanding of dynamic interactions between prophages and CRISPR with their hosts in both cultured and hitherto-uncultured SRP strains, and how their distribution affects the microbial community dynamics in several sulfidogenic natural and engineered environments.