Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66.278
Filtrar
1.
Nat Commun ; 15(1): 7839, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39244607

RESUMO

Burkholderia cenocepacia is an opportunistic and infective bacterium containing an orphan DNA methyltransferase called M.BceJIV with roles in regulating gene expression and motility of the bacterium. M.BceJIV recognizes a GTWWAC motif (where W can be an adenine or a thymine) and methylates N6 of the adenine at the fifth base position. Here, we present crystal structures of M.BceJIV/DNA/sinefungin ternary complex and allied biochemical, computational, and thermodynamic analyses. Remarkably, the structures show not one, but two DNA substrates bound to the M.BceJIV dimer, with each monomer contributing to the recognition of two recognition sequences. We also show that methylation at the two recognition sequences occurs independently, and that the GTWWAC motifs are enriched in intergenic regions in the genomes of B. cenocepacia strains. We further computationally assess the interactions underlying the affinities of different ligands (SAM, SAH, and sinefungin) for M.BceJIV, as a step towards developing selective inhibitors for limiting B. cenocepacia infection.


Assuntos
Proteínas de Bactérias , Burkholderia cenocepacia , Metilação de DNA , DNA Bacteriano , Burkholderia cenocepacia/genética , Burkholderia cenocepacia/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Epigênese Genética , Regulação Bacteriana da Expressão Gênica , Cristalografia por Raios X , Motivos de Nucleotídeos , Ligação Proteica
2.
Transl Psychiatry ; 14(1): 359, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39231927

RESUMO

BACKGROUND: Rapid-acting antidepressants (RAADs), including dissociative anesthetics, psychedelics, and empathogens, elicit rapid and sustained therapeutic improvements in psychiatric disorders by purportedly modulating neuroplasticity, neurotransmission, and immunity. These outcomes may be mediated by, or result in, an acute and/or sustained entrainment of epigenetic processes, which remodel chromatin structure and alter DNA accessibility to regulate gene expression. METHODS: In this perspective, we present an overview of the known mechanisms, knowledge gaps, and future directions surrounding the epigenetic effects of RAADs, with a focus on the regulation of stress-responsive DNA and brain regions, and on the comparison with conventional antidepressants. MAIN BODY: Preliminary correlative evidence indicates that administration of RAADs is accompanied by epigenetic effects which are similar to those elicited by conventional antidepressants. These include changes in DNA methylation, post-translational modifications of histones, and differential regulation of non-coding RNAs in stress-responsive chromatin areas involved in neurotrophism, neurotransmission, and immunomodulation, in stress-responsive brain regions. Whether these epigenetic changes causally contribute to the therapeutic effects of RAADs, are a consequence thereof, or are unrelated, remains unknown. Moreover, the potential cell type-specificity and mechanisms involved are yet to be fully elucidated. Candidate mechanisms include neuronal activity- and serotonin and Tropomyosine Receptor Kinase B (TRKB) signaling-mediated epigenetic changes, and direct interaction with DNA, histones, or chromatin remodeling complexes. CONCLUSION: Correlative evidence suggests that epigenetic changes induced by RAADs accompany therapeutic and side effects, although causation, mechanisms, and cell type-specificity remain largely unknown. Addressing these research gaps may lead to the development of novel neuroepigenetics-based precision therapeutics.


Assuntos
Antidepressivos , Metilação de DNA , Epigênese Genética , Epigênese Genética/efeitos dos fármacos , Humanos , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Metilação de DNA/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Animais , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/genética , Histonas/metabolismo , Estresse Psicológico/genética
3.
Front Endocrinol (Lausanne) ; 15: 1419742, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39253583

RESUMO

Objectives: In-depth understanding of osteonecrosis of femoral head (ONFH) has revealed that degeneration of the hip cartilage plays a crucial role in ONFH progression. However, the underlying molecular mechanisms and susceptibility to environmental factors in hip cartilage that contribute to ONFH progression remain elusive. Methods: We conducted a multiomics study and chemical-gene interaction analysis of hip cartilage in ONFH. The differentially expressed genes (DEGs) involved in ONFH progression were identified in paired hip cartilage samples from 36 patients by combining genome-wide DNA methylation profiling, gene expression profiling, and quantitative proteomics. Gene functional enrichment and pathway analyses were performed via Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Functional links between proteins were discovered through protein-protein interaction (PPI) networks. The ONFH-associated chemicals were identified by integrating the DEGs with the chemical-gene interaction sets in the Comparative Toxicogenomics Database (CTD). Finally, the DEGs, including MMP13 and CHI3L1, were validated via quantitative real-time PCR (qRT-PCR) and immunohistochemistry (IHC). Results: Twenty-two DEGs were identified across all three omics levels in ONFH cartilage, 16 of which were upregulated and six of which were downregulated. The collagen-containing extracellular matrix (ECM), ECM structural constituents, response to amino acids, the relaxin signaling pathway, and protein digestion and absorption were found to be primarily involved in cartilage degeneration in ONFH. Moreover, ten major ONFH-associated chemicals were identified, including, benzo(a)pyrene, valproic acid, and bisphenol A. Conclusion: Overall, our study identified several candidate genes, pathways, and chemicals associated with cartilage degeneration in ONFH, providing novel clues into the etiology and biological processes of ONFH progression.


Assuntos
Necrose da Cabeça do Fêmur , Perfilação da Expressão Gênica , Mapas de Interação de Proteínas , Humanos , Necrose da Cabeça do Fêmur/induzido quimicamente , Necrose da Cabeça do Fêmur/genética , Necrose da Cabeça do Fêmur/patologia , Necrose da Cabeça do Fêmur/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Proteômica/métodos , Metilação de DNA/efeitos dos fármacos , Redes Reguladoras de Genes , Multiômica
4.
Immun Inflamm Dis ; 12(9): e1331, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39254643

RESUMO

AIM: We aimed to explore the impact of DNA methylation alterations on the DNA damage response (DDR) in melanoma prognosis and immunity. MATERIAL & METHODS: Different melanoma cohorts with molecular and clinical data were included. RESULTS: Hierarchical clustering utilizing different combinations of DDR-relevant CpGs yielded distinct melanoma subtypes, which were characteristic of different prognoses, transcriptional function profiles of DDR, and immunity and immunotherapy responses but were associated with similar tumor mutation burdens. We then constructed and validated a clinically applicable 4-CpG risk-score signature for predicting survival and immunotherapy response. CONCLUSION: Our study describes the close interrelationship among DNA methylation, DDR machinery, local tumor immune status, melanoma prognosis, and immunotherapy response.


Assuntos
Dano ao DNA , Metilação de DNA , Melanoma , Melanoma/genética , Melanoma/imunologia , Melanoma/mortalidade , Humanos , Prognóstico , Imunoterapia/métodos , Ilhas de CpG , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/mortalidade , Neoplasias Cutâneas/patologia , Regulação Neoplásica da Expressão Gênica/imunologia , Mutação
5.
Methods Enzymol ; 703: 87-120, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39261005

RESUMO

In DNA, methylation at the fifth position of cytosine (5mC) by DNA methyltransferases is essential for eukaryotic gene regulation. Methylation patterns are dynamically controlled by epigenetic machinery. Erasure of 5mC by Fe2+ and 2-ketoglutarate (2KG) dependent dioxygenases in the ten-eleven translocation family (TET1-3), plays a key role in nuclear processes. Through the event of active demethylation, TET proteins iteratively oxidize 5mC to 5-hydroxymethyl cytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxycytosine (5caC), each of which has been implicated in numerous diseases when aberrantly generated. A wide range of biochemical assays have been developed to characterize TET activity, many of which require multi-step processing to detect and quantify the 5mC oxidized products. Herein, we describe the development and optimization of a sensitive MALDI mass spectrometry-based technique that directly measures TET activity and eliminates tedious processing steps. Employing optimized assay conditions, we report the steady-state activity of wild type TET2 enzymes to furnish 5hmC, 5fC and 5caC. We next determine IC50 values of several small-molecule inhibitors of TETs. The utility of this assay is further demonstrated by analyzing the activity of V1395A which is an activating mutant of TET2 that primarily generates 5caC. Lastly, we describe the development of a secondary assay that utilizes bisulfite chemistry to further examine the activity of wildtype TET2 and V1395A in a base-resolution manner. The combined results demonstrate that the activity of TET proteins can be gauged, and their products accurately quantified using our methods.


Assuntos
5-Metilcitosina , Proteínas de Ligação a DNA , Dioxigenases , Proteínas Proto-Oncogênicas , Dioxigenases/metabolismo , Dioxigenases/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Humanos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , 5-Metilcitosina/análise , 5-Metilcitosina/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Ensaios Enzimáticos/métodos , Oxigenases de Função Mista/metabolismo , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/química , Metilação de DNA , Citosina/análogos & derivados , Citosina/análise , Citosina/metabolismo , Citosina/química , Oxirredução
6.
Curr Protoc ; 4(9): e70003, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39258384

RESUMO

DNA methylation is well-established as a major epigenetic mechanism that can control gene expression and is involved in both normal development and disease. Analysis of high-throughput-sequencing-based DNA methylation data is a step toward understanding the relationship between disease and phenotype. Analysis of CpG methylation at single-base resolution is routinely done by bisulfite sequencing, in which methylated Cs remain as C while unmethylated Cs are converted to U, subsequently seen as T nucleotides. Sequence reads are aligned to the reference genome using mapping tools that accept the C-T ambiguity. Then, various statistical packages are used to identify differences in methylation between (groups of) samples. We have previously developed the Differential Methylation Analysis Pipeline (DMAP) as an efficient, fast, and flexible tool for this work, both for whole-genome bisulfite sequencing (WGBS) and reduced-representation bisulfite sequencing (RRBS). The protocol described here includes a series of scripts that simplify the use of DMAP tools and that can accommodate the wider range of input formats now in use to perform analysis of whole-genome-scale DNA methylation sequencing data in various biological and clinical contexts. © 2024 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol: DMAP2 workflow for whole-genome bisulfite sequencing (WGBS) and reduced-representation bisulfite sequencing (RRBS).


Assuntos
Metilação de DNA , Sulfitos , Sequenciamento Completo do Genoma , Sequenciamento Completo do Genoma/métodos , Humanos , Sulfitos/química , Análise de Sequência de DNA/métodos , Software , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Ilhas de CpG/genética
7.
Prog Mol Biol Transl Sci ; 208: 185-209, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39266182

RESUMO

The CRISPR-Cas9 method has revolutionized the gene editing. Epigenetic changes, including DNA methylation, RNA modification, and changes in histone proteins, have been intensively studied and found to play a key role in the pathogenesis of human diseases. CRISPR-While the utility of DNA and chromatin modifications, known as epigenetics, is well understood, the functional significance of various alterations of RNA nucleotides has recently gained attention. Recent advancements in improving CRISPR-based epigenetic modifications has resulted in the availability of a powerful source that can selectively modify DNA, allowing for the maintenance of epigenetic memory over several cell divisions. Accurate identification of DNA methylation at specific locations is crucial for the prompt detection of cancer and other diseases, as DNA methylation is strongly correlated to the onset as well as the advancement of such conditions. Genetic or epigenetic perturbations can disrupt the regulation of imprinted genes, resulting in the development of diseases. When histone code editors and DNA de-/ methyltransferases are coupled with catalytically inactive Cas9 (dCas9), and CRISPRa and CRISPRi, they demonstrate excellent efficacy in editing the epigenome of eukaryotic cells. Advancing and optimizing the extracellular delivery platform can, hence, further facilitate the manipulation of CRISPR-Cas9 gene editing technique in upcoming clinical studies. The current chapter focuses on how the CRISP/ Cas9 system provides an avenue for the epigenetic modifications and its employability for human benefit.


Assuntos
Sistemas CRISPR-Cas , Epigênese Genética , Humanos , Sistemas CRISPR-Cas/genética , Animais , Edição de Genes/métodos , Metilação de DNA/genética
8.
Clin Epigenetics ; 16(1): 133, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39300457

RESUMO

BACKGROUND: Epigenetic age accelerations (EAAs) are a promising new avenue of research, yet their investigation in subacute thyroiditis (SAT) remains scarce. Our study endeavors to fill this void by exploring the potential causal association between EAAs and SAT. METHODS: Our study utilized publicly available genome-wide association study (GWAS) data of European ancestry to conduct a bidirectional Mendelian randomization (MR) study. Five MR methods were employed to measure causal association between EAAs and SAT multiple analyses were utilized to perform quality control. RESULTS: Our study evaluated causal association between SAT and four EAAs, included GrimAge acceleration (GrimAA), Hannum age acceleration (HannumAA), PhenoAge acceleration (PhenoAA), intrinsic epigenetic age acceleration (IEAA). Results showed that there is a significant causal association between PhenoAA and SAT (OR 1.109, 95% CI 1.000-1.228, p = 0.049, by IVW method). On the contrary, SAT was associated with IEAA (OR 0.933, 95% CI 0.884-0.984, p = 0.011, by IVW method; OR 0.938, 95% CI 0.881-0.998, p = 0.043, by weighted median method). Leave-one-out sensitivity analysis, heterogeneity test, pleiotropy test, and MR-PRESSO analysis provide good quality control. CONCLUSION: The bidirectional MR analysis concluded that an increase in PhenoAA was correlated with a higher risk of SAT, indicating a potential causal relationship between PhenoAA and risk of SAT. Conversely, SAT was found to be closely associated with IEAA, suggesting that SAT may accelerate the aging process. Slowing down biological aging has emerged as a new research direction in curbing SAT.


Assuntos
Epigênese Genética , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Tireoidite Subaguda , Humanos , Análise da Randomização Mendeliana/métodos , Estudo de Associação Genômica Ampla/métodos , Epigênese Genética/genética , Tireoidite Subaguda/genética , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Feminino , Metilação de DNA/genética , Masculino , Fatores de Risco , Envelhecimento/genética
9.
Mol Cancer ; 23(1): 182, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39218851

RESUMO

BACKGROUND: The cancer genome contains several driver mutations. However, in some cases, no known drivers have been identified; these remaining areas of unmet needs, leading to limited progress in cancer therapy. Whole-genome sequencing (WGS) can identify non-coding alterations associated with the disease. Consequently, exploration of non-coding regions using WGS and other omics data such as ChIP-sequencing (ChIP-seq) to discern novel alterations and mechanisms related to tumorigenesis have been attractive these days. METHODS: Integrated multi-omics analyses, including WGS, ChIP-seq, DNA methylation, and RNA-sequencing (RNA-seq), were conducted on samples from patients with non-clinically actionable genetic alterations (non-CAGAs) in lung adenocarcinoma (LUAD). Second-level cluster analysis was performed to reinforce the correlations associated with patient survival, as identified by RNA-seq. Subsequent differential gene expression analysis was performed to identify potential druggable targets. RESULTS: Differences in H3K27ac marks in non-CAGAs LUAD were found and confirmed by analyzing RNA-seq data, in which mastermind-like transcriptional coactivator 2 (MAML2) was suppressed. The down-regulated genes whose expression was correlated to MAML2 expression were associated with patient prognosis. WGS analysis revealed somatic mutations associated with the H3K27ac marks in the MAML2 region and high levels of DNA methylation in MAML2 were observed in tumor samples. The second-level cluster analysis enabled patient stratification and subsequent analyses identified potential therapeutic target genes and treatment options. CONCLUSIONS: We overcome the persistent challenges of identifying alterations or driver mutations in coding regions related to tumorigenesis through a novel approach combining multi-omics data with clinical information to reveal the molecular mechanisms underlying non-CAGAs LUAD, stratify patients to improve patient prognosis, and identify potential therapeutic targets. This approach may be applicable to studies of other cancers with unmet needs.


Assuntos
Adenocarcinoma de Pulmão , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares , Humanos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/mortalidade , Adenocarcinoma de Pulmão/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/metabolismo , Análise por Conglomerados , Genômica/métodos , Mutação , Biomarcadores Tumorais/genética , Feminino , Masculino , Sequenciamento Completo do Genoma , Prognóstico , Terapia de Alvo Molecular , Perfilação da Expressão Gênica , Idoso , Pessoa de Meia-Idade , Multiômica
10.
BMC Med ; 22(1): 352, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39218882

RESUMO

BACKGROUND: The radiogenomic analysis has provided valuable imaging biomarkers with biological insights for gliomas. The radiogenomic markers for molecular profile such as DNA methylation remain to be uncovered to assist the molecular diagnosis and tumor treatment. METHODS: We apply the machine learning approaches to identify the magnetic resonance imaging (MRI) features that are associated with molecular profiles in 146 patients with gliomas, and the fitting models for each molecular feature (MoRad) are developed and validated. To provide radiological annotations for the molecular profiles, we devise two novel approaches called radiomic oncology (RO) and radiomic set enrichment analysis (RSEA). RESULTS: The generated MoRad models perform well for profiling each molecular feature with radiomic features, including mutational, methylation, transcriptional, and protein profiles. Among them, the MoRad models have a remarkable performance in quantitatively mapping global DNA methylation. With RO and RSEA approaches, we find that global DNA methylation could be reflected by the heterogeneity in volumetric and textural features of enhanced regions in T2-weighted MRI. Finally, we demonstrate the associations of global DNA methylation with clinicopathological, molecular, and immunological features, including histological grade, mutations of IDH and ATRX, MGMT methylation, multiple methylation-high subtypes, tumor-infiltrating lymphocytes, and long-term survival outcomes. CONCLUSIONS: Global DNA methylation is highly associated with radiological profiles in glioma. Radiogenomic global methylation is an imaging-based quantitative molecular biomarker that is associated with specific consensus molecular subtypes and immune features.


Assuntos
Neoplasias Encefálicas , Metilação de DNA , Glioma , Imageamento por Ressonância Magnética , Humanos , Glioma/genética , Glioma/imunologia , Metilação de DNA/genética , Feminino , Masculino , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Pessoa de Meia-Idade , Adulto , Aprendizado de Máquina , Fenótipo , Idoso , Biomarcadores Tumorais/genética
11.
Signal Transduct Target Ther ; 9(1): 226, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39218931

RESUMO

The primary reason for high mortality rates among cancer patients is metastasis, where tumor cells migrate through the bloodstream from the original site to other parts of the body. Recent advancements in technology have significantly enhanced our comprehension of the mechanisms behind the bloodborne spread of circulating tumor cells (CTCs). One critical process, DNA methylation, regulates gene expression and chromosome stability, thus maintaining dynamic equilibrium in the body. Global hypomethylation and locus-specific hypermethylation are examples of changes in DNA methylation patterns that are pivotal to carcinogenesis. This comprehensive review first provides an overview of the various processes that contribute to the formation of CTCs, including epithelial-mesenchymal transition (EMT), immune surveillance, and colonization. We then conduct an in-depth analysis of how modifications in DNA methylation within CTCs impact each of these critical stages during CTC dissemination. Furthermore, we explored potential clinical implications of changes in DNA methylation in CTCs for patients with cancer. By understanding these epigenetic modifications, we can gain insights into the metastatic process and identify new biomarkers for early detection, prognosis, and targeted therapies. This review aims to bridge the gap between basic research and clinical application, highlighting the significance of DNA methylation in the context of cancer metastasis and offering new avenues for improving patient outcomes.


Assuntos
Metilação de DNA , Transição Epitelial-Mesenquimal , Neoplasias , Células Neoplásicas Circulantes , Células Neoplásicas Circulantes/patologia , Células Neoplásicas Circulantes/metabolismo , Humanos , Metilação de DNA/genética , Transição Epitelial-Mesenquimal/genética , Neoplasias/genética , Neoplasias/patologia , Biomarcadores Tumorais/genética , Metástase Neoplásica , Epigênese Genética/genética
12.
Brief Bioinform ; 25(5)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39222060

RESUMO

Instruction-tuned large language models (LLMs) demonstrate exceptional ability to align with human intentions. We present an LLM-based model-instruction-tuned LLM for assessment of cancer (iLLMAC)-that can detect cancer using cell-free deoxyribonucleic acid (cfDNA) end-motif profiles. Developed on plasma cfDNA sequencing data from 1135 cancer patients and 1106 controls across three datasets, iLLMAC achieved area under the receiver operating curve (AUROC) of 0.866 [95% confidence interval (CI), 0.773-0.959] for cancer diagnosis and 0.924 (95% CI, 0.841-1.0) for hepatocellular carcinoma (HCC) detection using 16 end-motifs. Performance increased with more motifs, reaching 0.886 (95% CI, 0.794-0.977) and 0.956 (95% CI, 0.89-1.0) for cancer diagnosis and HCC detection, respectively, with 64 end-motifs. On an external-testing set, iLLMAC achieved AUROC of 0.912 (95% CI, 0.849-0.976) for cancer diagnosis and 0.938 (95% CI, 0.885-0.992) for HCC detection with 64 end-motifs, significantly outperforming benchmarked methods. Furthermore, iLLMAC achieved high classification performance on datasets with bisulfite and 5-hydroxymethylcytosine sequencing. Our study highlights the effectiveness of LLM-based instruction-tuning for cfDNA-based cancer detection.


Assuntos
Carcinoma Hepatocelular , Ácidos Nucleicos Livres , Humanos , Ácidos Nucleicos Livres/sangue , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/sangue , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/sangue , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/sangue , Curva ROC , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/sangue , Motivos de Nucleotídeos , Metilação de DNA
13.
Mol Genet Genomics ; 299(1): 85, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39230791

RESUMO

Clinical biomarkers such as fasting glucose, HbA1c, and fasting insulin, which gauge glycemic status in the body, are highly influenced by diet. Indians are genetically predisposed to type 2 diabetes and their carbohydrate-centric diet further elevates the disease risk. Despite the combined influence of genetic and environmental risk factors, Indians have been inadequately explored in the studies of glycemic traits. Addressing this gap, we investigate the genetic architecture of glycemic traits at genome-wide level in 4927 Indians (without diabetes). Our analysis revealed numerous variants of sub-genome-wide significance, and their credibility was thoroughly assessed by integrating data from various levels. This identified key effector genes, ZNF470, DPP6, GXYLT2, PITPNM3, BEND7, and LORICRIN-PGLYRP3. While these genes were weakly linked with carbohydrate intake or glycemia earlier in other populations, our findings demonstrated a much stronger association in the Indian population. Associated genetic variants within these genes served as expression quantitative trait loci (eQTLs) in various gut tissues essential for digestion. Additionally, majority of these gut eQTLs functioned as methylation quantitative trait loci (meth-QTLs) observed in peripheral blood samples from 223 Indians, elucidating the underlying mechanism of their regulation of target gene expression. Specific co-localized eQTLs-meth-QTLs altered the binding affinity of transcription factors targeting crucial genes involved in glucose metabolism. Our study identifies previously unreported genetic variants that strongly influence the diet-glycemia relationship. These findings set the stage for future research into personalized lifestyle interventions integrating genetic insights with tailored dietary strategies to mitigate disease risk based on individual genetic profiles.


Assuntos
Glicemia , Metabolismo dos Carboidratos , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Humanos , Índia/epidemiologia , Glicemia/metabolismo , Masculino , Metabolismo dos Carboidratos/genética , Feminino , Diabetes Mellitus Tipo 2/genética , Adulto , Predisposição Genética para Doença , Pessoa de Meia-Idade , Metilação de DNA/genética , Multiômica
14.
BMC Plant Biol ; 24(1): 823, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39223458

RESUMO

BACKGROUND: DNA methylation is a critical factor influencing plant growth, adaptability, and phenotypic plasticity. While extensively studied in model and crop species, it remains relatively unexplored in holm oak and other non-domesticated forest trees. This study conducts a comprehensive in-silico mining of DNA methyltransferase and demethylase genes within the holm oak genome to enhance our understanding of this essential process in these understudied species. The expression levels of these genes in adult and seedling leaves, as well as embryos, were analysed using quantitative real-time PCR (qRT-PCR). Global DNA methylation patterns were assessed through methylation-sensitive amplified polymorphism (MSAP) techniques. Furthermore, specific methylated genomic sequences were identified via MSAP sequencing (MSAP-Seq). RESULT: A total of 13 DNA methyltransferase and three demethylase genes were revealed in the holm oak genome. Expression levels of these genes varied significantly between organs and developmental stages. MSAP analyses revealed a predominance of epigenetic over genetic variation among organs and developmental stages, with significantly higher global DNA methylation levels observed in adult leaves. Embryos exhibited frequent demethylation events, while de novo methylation was prevalent in seedling leaves. Approximately 35% of the genomic sequences identified by MSAP-Seq were methylated, predominantly affecting nuclear genes and intergenic regions, as opposed to repetitive sequences and chloroplast genes. Methylation was found to be more pronounced in the exonic regions of nuclear genes compared to their promoter and intronic regions. The methylated genes were predominantly associated with crucial biological processes such as photosynthesis, ATP synthesis-coupled electron transport, and defence response. CONCLUSION: This study opens a new research direction in analysing variability in holm oak by evaluating the epigenetic events and mechanisms based on DNA methylation. It sheds light on the enzymatic machinery governing DNA (de)methylation, and the changes in the expression levels of methylases and demethylases in different organs along the developmental stages. The expression level was correlated with the DNA methylation pattern observed, showing the prevalence of de novo methylation and demethylation events in seedlings and embryos, respectively. Several methylated genes involved in the regulation of transposable element silencing, lipid biosynthesis, growth and development, and response to biotic and abiotic stresses are highlighted. MSAP-seq integrated with whole genome bisulphite sequencing and advanced sequencing technologies, such as PacBio or Nanopore, will bring light on epigenetic mechanisms regulating the expression of specific genes and its correlation with the phenotypic variability and the differences in the response to environmental cues, especially those related to climate change.


Assuntos
Metilação de DNA , Quercus , Quercus/genética , Quercus/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Epigênese Genética , Plântula/genética , Plântula/crescimento & desenvolvimento , Genoma de Planta
15.
Food Res Int ; 194: 114939, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39232552

RESUMO

Understanding the epigenetic responses to mechanical wounding stress during the postharvest processing of oolong tea provides insight into the reprogramming of the tea genome and its impact on tea quality. Here, we characterized the 5mC DNA methylation and chromatin accessibility landscapes of tea leaves subjected to mechanical wounding stress during the postharvest processing of oolong tea. Analysis of the differentially methylated regions and preferentially accessible promoters revealed many overrepresented TF-binding motifs, highlighting sets of TFs that are likely important for the quality of oolong tea. Within these sets, we constructed a chromatin accessibility-mediated gene regulatory network specific to mechanical wounding stress. In combination with the results of the TF-centred yeast one-hybrid assay, we identified potential binding sites of CsMYC2 and constructed a gene regulatory network centred on CsMYC2, clarifying the potential regulatory role of CsMYC2 in the postharvest processing of oolong tea. Interestingly, highly accessible chromatin and hypomethylated cytosine were found to coexist in the promoter region of the indole biosynthesis gene (tryptophan synthase ß-subunit, CsTSB) under wounding stress, which indicates that these two important epigenetic regulatory mechanisms are jointly involved in regulating the synthesis of indole during the postharvest processing of oolong tea. These findings improve our understanding of the epigenetic regulatory mechanisms involved in quality formation during the postharvest processing of oolong tea.


Assuntos
Camellia sinensis , Metilação de DNA , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Folhas de Planta , Folhas de Planta/genética , Camellia sinensis/genética , Regiões Promotoras Genéticas , Manipulação de Alimentos/métodos , Chá/genética , Estresse Mecânico , Genoma de Planta , Redes Reguladoras de Genes , Cromatina/metabolismo , Cromatina/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
16.
Nat Commun ; 15(1): 7875, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39285180

RESUMO

Dysregulation of master regulator c-MYC (MYC) plays a central role in hepatocellular carcinoma (HCC) and other cancers but remains an elusive target for therapeutic intervention. MYC expression is epigenetically modulated within naturally occurring DNA loop structures, Insulated Genomic Domains (IGDs). We present a therapeutic approach using an epigenomic controller (EC), a programmable epigenomic mRNA medicine, to precisely modify MYC IGD sub-elements, leading to methylation of MYC regulatory elements and durable downregulation of MYC mRNA transcription. Significant antitumor activity is observed in preclinical models of HCC treated with the MYC-targeted EC, as monotherapy or in combination with tyrosine kinase or immune checkpoint inhibitors. These findings pave the way for clinical development of MYC-targeting epigenomic controllers in HCC patients and provide a framework for programmable epigenomic mRNA therapeutics for cancer and other diseases.


Assuntos
Carcinoma Hepatocelular , Metilação de DNA , Regulação para Baixo , Epigenômica , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , Proteínas Proto-Oncogênicas c-myc , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Humanos , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Animais , Camundongos , Linhagem Celular Tumoral , Regulação para Baixo/genética , Epigenômica/métodos , Epigênese Genética , Ensaios Antitumorais Modelo de Xenoenxerto , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Transcrição Gênica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
17.
Nat Commun ; 15(1): 8093, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39285199

RESUMO

We describe a framework that addresses concern that the rate of change in any aging biomarker displays a trivial inverse relation with maximum lifespan. We apply this framework to methylation data from the Mammalian Methylation Consortium. We study the relationship of lifespan with the average rate of change in methylation (AROCM) from two datasets: one with 90 dog breeds and the other with 125 mammalian species. After examining 54 chromatin states, we conclude three key findings: First, a reciprocal relationship exists between the AROCM in bivalent promoter regions and maximum mammalian lifespan: AROCM ∝ 1/MaxLifespan. Second, the correlation between average methylation and age bears no relation to maximum lifespan, Cor(Methyl,Age) ⊥ MaxLifespan. Third, the rate of methylation change in young animals is related to that in old animals: Young animals' AROCM ∝ Old AROCM. These findings critically hinge on the chromatin context, as different results emerge in other chromatin contexts.


Assuntos
Cromatina , Metilação de DNA , Longevidade , Mamíferos , Regiões Promotoras Genéticas , Animais , Longevidade/genética , Mamíferos/genética , Cães , Cromatina/metabolismo , Cromatina/genética , Regiões Promotoras Genéticas/genética , Envelhecimento/genética , Envelhecimento/fisiologia , Humanos
18.
Clin Epigenetics ; 16(1): 128, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39285447

RESUMO

To assess the impact of postnatal processing on placental DNA methylation, array data from flash-frozen placental tissue was compared to perfluorocarbon-immersed and formalin-fixed paraffin-embedded placental tissue. We observed that tissue exposed to perfluorocarbon showed no significant DNA methylation differences when compared to unprocessed tissue, while formalin processing altered the quality and reliability of the data produced on the DNA methylation array platform. Placental DNA methylation allows for the study of gene-environment interactions that influence the fetal environment and development. Our study highlights that placental post-processing techniques must be considered in the evaluation and interpretation of epigenetic studies.


Assuntos
Metilação de DNA , Placenta , Humanos , Metilação de DNA/genética , Feminino , Placenta/metabolismo , Gravidez , Epigênese Genética/genética , Inclusão em Parafina/métodos , Epigenômica/métodos
19.
Epigenetics ; 19(1): 2393945, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39306700

RESUMO

Epigenomic annotations for the rat lag far behind those of human and mouse, despite the rat's immense utility in pharmacological and behavioral studies and the need to understand their epigenetic mechanisms. We have designed a targeted-enrichment method followed by next-generation sequencing (Methyl-Seq) to identify DNA methylation (DNAm) signatures across the rat genome. The design reflected an attempt to create a more comprehensive investigation of the rat epigenome, as it included promoters, CpG islands, and island shores of all RefSeq genes. In this study, we implemented the rat Methyl-Seq platform and tested its ability to distinguish differentially methylated regions (DMRs) among three different tissue types, three distinct brain regions, and, in the hippocampus, between males and females. These comparisons yielded DNAm differences of differing magnitudes, many of which were independently validated by bisulfite pyrosequencing, including autosomal regions that were predicted to show the least degree of difference in DNAm between males and females. Quantitative reverse transcription PCR revealed that most genes associated with the DMRs showed tissue-, brain region-, and sex-specific differences in expression. In particular, we found evidence for sex-specific DNAm and expression differences at Tubb6, Lrrn2, Tex26, and Sox5l1, all of which play important roles in neurodevelopment and have been implicated in studies examining sex differences. Our results demonstrate the utility of the rat Methyl-Seq platform and suggest the presence of DNAm differences between the male and female hippocampus. The rat Methyl-Seq has the potential to provide epigenomic insights into pharmacological and behavioral studies performed in the rat.


Assuntos
Ilhas de CpG , Metilação de DNA , Epigenoma , Animais , Masculino , Feminino , Ratos , Especificidade de Órgãos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Hipocampo/metabolismo , Caracteres Sexuais , Encéfalo/metabolismo , Epigênese Genética , Análise de Sequência de DNA/métodos
20.
PLoS One ; 19(9): e0308644, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39298419

RESUMO

Although it is widely known that various pharmaceuticals affect the methylome, the knowledge of the effects from anesthesia is limited, and nearly nonexistent regarding the effects of obstetric anesthesia on the newborn child. Using sequencing based-methylation data and a reference-based statistical deconvolution approach we performed methylome-wide association studies (MWAS) of neonatal whole blood, and for each cell-type specifically, to detect methylation variations that are associated with the pain relief administered to the mother during delivery. Significant findings were replicated in a different dataset and followed-up with gene ontology analysis to pinpoint biological functions of potential relevance to these neonatal methylation alterations. The MWAS analyses detected methylome-wide significant (q<0.1) alterations in the newborn for laughing gas in granulocytes (two CpGs, p<5.50x10-9, q = 0.067), and for pudendal block in monocytes (five CpGs across three loci, p<1.51 x10-8, q = 0.073). Suggestively significant findings (p<1.00x10-6) were detected for both treatments for bulk and all cell-types, and replication analyses showed consistent significant enrichment (odds ratios ranging 3.47-39.02; p<4.00×10-4) for each treatment, suggesting our results are robust. In contrast, we did not observe any overlap across treatments, suggesting that the treatments are associated with different alterations of the neonatal blood methylome. Gene ontology analyses of the replicating suggestively significant results indicated functions related to, for example, cell differentiation, intracellular membrane-bound organelles and calcium transport. In conclusion, for the first time, we investigated and detected effect of obstetric pain-relief on the blood methylome in the newborn child. The observed differences suggest that anesthetic treatment, such as laughing gas or pudendal block, may alter the neonatal methylome in a cell-type specific manner. Some of the observed alterations are part of gene ontology terms that previously have been suggested in relation to anesthetic treatment, supporting its potential role also in obstetric anesthesia.


Assuntos
Metilação de DNA , Humanos , Recém-Nascido , Feminino , Gravidez , Estudo de Associação Genômica Ampla , Ilhas de CpG , Monócitos/metabolismo , Manejo da Dor/métodos , Epigenoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA