Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81.523
Filtrar
1.
J Long Term Eff Med Implants ; 34(4): 57-63, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38842233

RESUMO

The surface of dental implants has undergone multiple modifications across the timeline to enhance osseointegration, thereby enhancing the success of dental implants. This study compared the surface roughness, wettability and topography of sandblasted acid-etched, and oxidized titanium dental implants. Three commercially available implants-namely, SLA, SLActive, and TiUnite-were evaluated for surface roughness in terms of Ra, Rq, and Rz; wettability in terms of contact angle (CA); and topography using scanning electron microscopy (SEM). Roughness and wettability values were compared between the three surfaces by ANOVA and pairwise comparison by Tukey's HSD post hoc testing using SPSS Software. A p value of < 0.01 was considered to be statistically significant. The TiUnite surface exhibited the highest roughness values (Ra = 1.91 ± 0.006 µm, Rq = 2.99 ± 0.005 µm, Rz = 8.37 ± 0.003 µm) followed by the SLA and SLActive surfaces. The contact angles of the SLA, SLActive, and TiUnite dental implants were 98.44 ± 0.52°, 9 ± 0.03°, and 94.39 ± 0.08°, respectively. These data demonstrated statistically significant differences between the three surfaces (p < 0.01). There were no distinct differences in SEM features between the SLA and SLActive surfaces. However, the TiUnite surface exhibited a distinctly porous morphology. Oxidized dental implants differ from sandblasted acid-etched implants in terms of roughness, wettability, and surface topography.


Assuntos
Condicionamento Ácido do Dente , Implantes Dentários , Microscopia Eletrônica de Varredura , Oxirredução , Propriedades de Superfície , Titânio , Molhabilidade , Titânio/química , Teste de Materiais , Humanos
2.
J Long Term Eff Med Implants ; 34(4): 83-94, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38842236

RESUMO

Powder-mixed electrical discharge machining (PMEDM) enhances the effectiveness of the electric discharge machining process. It has been used on the Mg alloy AZ91D to address biodegradation concerns in implants. By combining nano-conductive powder particles with the dielectric fluid, PMEDM creates a functional surface. Process parameters like pulse on time, pulse off time, peak current, and powder concentration are examined to optimize material removal rate (MRR), surface roughness (SR), and white layer thickness (WLT). The optimization of input parameters was completed using the Taguchi L9 technique and further analyzed using ANOVA technique that illustrates Ton and pulse-off time as more significant process parameters for powder mixed electric discharge machining as compared with electric potential and peak current. The optimal surface roughness value is found to be 2.215 µm at 3A pulse current and 15 µs Toff time which suggest the material to be suitable for implants.


Assuntos
Implantes Absorvíveis , Ligas , Magnésio , Propriedades de Superfície , Magnésio/química , Teste de Materiais , Pós
3.
BMC Oral Health ; 24(1): 650, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824555

RESUMO

BACKGROUND: The formation of white spots, which represent early carious lesions, is a major issue with fixed orthodontics. The addition of remineralizing agents to orthodontic adhesives may prevent the formation of white spots. The aim of this study was to produce a composite orthodontic adhesive combined with nano-bioactive glass-silver (nBG@Ag) for bracket bonding to enamel and to investigate its cytotoxicity, antimicrobial activity, remineralization capability, and bond strength. METHODS: nBG@Ag was synthesized using the sol-gel method, and characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy with an attenuated total reflectance attachment (ATR-FTIR). The cytotoxicity test (MTT) and antimicrobial activity of adhesives containing 1%, 3%, and 5% (wt/wt) nBG@Ag were evaluated, and the shear bond strength of the adhesives was measured using a universal testing machine. Remineralization was assessed through microhardness testing with a Vickers microhardness tester and scanning electron microscopy (SEM). Statistical analyses were conducted using the Shapiro-Wilk test, Levene test, one-way ANOVA, Robust-Welch test, Tukey HSD method, and two-way ANOVA. RESULTS: The biocompatibility of the adhesives was found to be high, as confirmed by the lack of significant differences in the cytotoxicity between the sample and control groups. Discs made from composites containing nBG@Ag exhibited a significant reduction in the growth of Streptococcus mutans (p < 0.05), and the antibacterial activity increased with higher percentages of nBG@Ag. The shear bond strength of the adhesives decreased significantly (p < 0.001) after the addition of nanoparticles, but it remained above the recommended value. The addition of nBG@Ag showed improvement in the microhardness of the teeth, although the differences in microhardness between the study groups were not statistically significant. The formation of hydroxyapatite deposits on the tooth surface was confirmed through SEM and energy-dispersive X-ray spectroscopy (EDX). CONCLUSION: Adding nBG@Ag to orthodontic adhesives can be an effective approach to enhance antimicrobial activity and reduce enamel demineralization around the orthodontic brackets, without compromising biocompatibility and bond strength.


Assuntos
Antibacterianos , Cimentos Dentários , Braquetes Ortodônticos , Prata , Remineralização Dentária , Antibacterianos/farmacologia , Prata/farmacologia , Remineralização Dentária/métodos , Cimentos Dentários/farmacologia , Teste de Materiais , Nanoestruturas/uso terapêutico , Streptococcus mutans/efeitos dos fármacos , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X , Vidro/química , Microscopia Eletrônica de Transmissão , Cerâmica , Humanos , Resinas Compostas/farmacologia , Resinas Compostas/química , Resistência ao Cisalhamento , Dureza , Colagem Dentária/métodos , Esmalte Dentário/efeitos dos fármacos
4.
PLoS One ; 19(6): e0303293, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38865365

RESUMO

Silica aerogels or xerogels are renowned dried gels with low density, high surface area, higher porosity, and better thermal stability which makes it suitable for aerospace, light weight structures, thermal insulation, and hydrophobic coatings. But brittle behaviour, low mechanical strength, and high manufacturing cost restrict its usage. Recently, the addition of various fibres like glass or carbon fiber is one of the best reinforcement methods to minimize the brittle behaviour. Supercritical drying technique usually used to develop aerogel that is expensive and difficult to produce in bulk quantities. Higher cost obstacle can be tackled by applying ambient pressure drying technique to develop xerogel. But researcher observed cracks in samples prepared through the ambient pressure drying technique is still a major shortcoming. The aim of this study is to systematically analyze the influence of silica gel fiber reinforcement on silica xerogels, encompassing morphology, mechanics, thermal behaviour, compression test, and thermogravimetric characteristics. The research used a low-cost precursor named Tetraethyl orthosilicate to synthesize low-cost composite Silica xerogel and glass and carbon fiber added to provide strength and flexibility to the overall composite. Silica gel works as binder in strengthening the xerogel network. The investigation employs scanning electron microscopy (SEM) to examine the morphology of the composites, Fourier Transform Infrared (FTIR) analysis to affirm hydrophobic characteristics, compression tests to assess mechanical strength, and thermogravimetric tests to study weight loss under different conditions. SEM results reveals that glass fibers exhibit lower adhesion to the xerogel network compared to carbon fibers. FTIR analysis confirms the hydrophobicity of the composite silica xerogel. Compression tests showed that, under a 48% strain rate, the carbon fiber composite demonstrates superior compressive stress endurance. Thermogravimetric tests revealed a 1% lower weight loss for the carbon fiber composite compared to the glass fiber composite. This work concludes that glass and carbon fiber together with silica gel particles successfully facilitated in developing flexible, less costly, hydrophobic, and crack-free silica xerogel composites by APD. These advancements have the potential to drive innovations in material science and technology across diverse industries.


Assuntos
Dióxido de Silício , Dióxido de Silício/química , Termogravimetria , Géis/química , Sílica Gel/química , Vidro/química , Temperatura , Fibra de Carbono/química , Microscopia Eletrônica de Varredura , Porosidade , Teste de Materiais , Espectroscopia de Infravermelho com Transformada de Fourier
5.
IET Nanobiotechnol ; 2024: 4391833, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38863970

RESUMO

The massive growth of various microorganisms on the orthodontic bracket can form plaques and cause diseases. A novel amine-terminated hyperbranched zirconium-polysiloxane (HPZP) antimicrobial coating was developed for an orthodontic stainless steel tank (SST). After synthesizing HPZP and HPZP-Ag coatings, their structures were characterized by nuclear magnetic resonance spectroscopy, scanning electron microscopy, thickness measurement, contact angle detection, mechanical stability testing, and corrosion testing. The cell toxicity of the two coatings to human gingival fibroblasts (hGFs) and human oral keratinocytes (hOKs) was detected by cell counting kit eight assays, and SST, HPZP@SST, and HPZP-Ag@SST were cocultured with Staphylococcus aureus, Escherichia coli, and Streptococcus mutans for 24 hr to detect the antibacterial properties of the coatings, respectively. The results show that the coatings are about 10 µm, and the water contact angle of HPZP coating is significantly higher than that of HPZP-Ag coating (P < 0.01). Both coatings can be uniformly and densely distributed on SST and have good mechanical stability and corrosion resistance. The cell counting test showed that HPZP coating and HPZP-Ag coating were less toxic to cells compared with SST, and the toxicity of HPZP-Ag coating was greater than that of HPZP coating, with the cell survival rate greater than 80% after 72 hr cocultured with hGFs and hOKs. The antibacterial test showed that the number of bacteria on the surface of different materials was ranked from small to large: HPZP@SST < HPZP-Ag@SST < SST and 800 µg/mL HPZP@SST showed a better bactericidal ability than 400 µg/mL after cocultured with S. aureus, E. coli, and S. mutans, respectively (all P < 0.05). The results showed that HPZP coating had a better effect than HPZP-Ag coating, with effective antibacterial and biocompatible properties, which had the potential to be applied in orthodontic process management.


Assuntos
Antibacterianos , Materiais Revestidos Biocompatíveis , Braquetes Ortodônticos , Siloxanas , Aço Inoxidável , Zircônio , Aço Inoxidável/química , Aço Inoxidável/farmacologia , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Braquetes Ortodônticos/microbiologia , Zircônio/química , Zircônio/farmacologia , Siloxanas/química , Siloxanas/farmacologia , Fibroblastos/efeitos dos fármacos , Teste de Materiais , Aminas/química , Aminas/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Propriedades de Superfície , Escherichia coli/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Gengiva/citologia , Gengiva/efeitos dos fármacos
6.
J Appl Oral Sci ; 32: e20230291, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38865512

RESUMO

The prevalence of gingivitis is substantial within the general population, necessitating rigorous oral hygiene maintenance. OBJECTIVE: This study assessed a Garcinia indica (GI) fruit extract-based mouthrinse, comparing it to a 0.1% turmeric mouthrinse and a 0.2% Chlorhexidine (CHX) mouthrinse. The evaluation encompassed substantivity, staining potential, antimicrobial efficacy and cytocompatibility. METHODOLOGY: The study employed 182 tooth sections. For antimicrobial analysis, 64 extracted human teeth coated with a polymicrobial biofilm were divided into four groups, each receiving an experimental mouthrinse or serving as a control group with distilled water. Microbial reduction was assessed through colony forming units (CFU). Substantivity was evaluated on 54 human tooth sections using a UV spectrophotometer, while staining potential was examined on 64 tooth sections. Cytocompatibility was tested using colorimetric assay to determine non-toxic levels of 0.2% GI fruit extract, 0.1% Turmeric, and 0.2% CHX. RESULTS: Data were analysed with one-way ANOVA (α=0.05). Cell viability was highly significant (p<0.001) in the 0.2% GI group (64.1±0.29) compared to 0.1% Turmeric (40.2±0.34) and 0.2% CHX (10.95±1.40). For antimicrobial activity, both 0.2% GI (20.18±4.81) and 0.2% CHX (28.22±5.41) exhibited no significant difference (P>0.05) at end of 12 hours. However, 0.1% Turmeric showed minimal CFU reduction (P<0.001). Substantivity results at 360 minutes indicated statistically significant higher mean release rate in 0.1%Turmeric (12.47±5.84 ) when compared to 0.2% GI (5.02±3.04) and 0.2% CHX (4.13±2.25) (p<0.001). The overall discoloration changes (∆E) were more prominent in the 0.2% CHX group (18.65±8.3) compared to 0.2% GI (7.61±2.4) and 0.1% Turmeric (7.32±4.9) (P<0.001). CONCLUSION: This study supports 0.2% GI and 0.1% Turmeric mouth rinses as potential natural alternatives to chemical mouth rinses. These findings highlight viability of these natural supplements in oral healthcare.


Assuntos
Biofilmes , Clorexidina , Curcuma , Frutas , Garcinia , Antissépticos Bucais , Higiene Bucal , Extratos Vegetais , Extratos Vegetais/farmacologia , Humanos , Antissépticos Bucais/farmacologia , Clorexidina/farmacologia , Garcinia/química , Curcuma/química , Biofilmes/efeitos dos fármacos , Higiene Bucal/métodos , Frutas/química , Análise de Variância , Contagem de Colônia Microbiana , Reprodutibilidade dos Testes , Sobrevivência Celular/efeitos dos fármacos , Anti-Infecciosos Locais/farmacologia , Espectrofotometria Ultravioleta , Colorimetria , Teste de Materiais , Fatores de Tempo
7.
JACC Cardiovasc Interv ; 17(11): 1340-1351, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38866457

RESUMO

BACKGROUND: The etiology of transcatheter aortic valve (TAV) degeneration is poorly understood, particularly noncalcific mechanisms. OBJECTIVES: The authors sought to investigate noncalcific and calcific mechanisms of TAV degeneration and evaluate their impact on leaflet function by bench testing, imaging, and histology. METHODS: TAV explants were obtained from the EXPLANT THV registry and clinical institutions. Hydrodynamic assessment was performed using a heart valve pulse duplicator system under physiological conditions. Micro-computed tomography, high-resolution photography, high speed video, and hematoxylin and eosin staining were used to evaluate the morphological appearance, leaflet kinematics, and calcium burden of TAVs. RESULTS: A total of 14 explants were evaluated: 10 self-expanding CoreValve/Evolut TAVs (Medtronic), 3 balloon-expandable SAPIEN 3 TAVs (Edwards Lifesciences), and 1 mechanically expandable Lotus TAV (Boston Scientific). The median patient age at explantation was 73.0 years (Q1-Q3: 64.5-80.0 years), with a time to explantation of 4 years 1 month (1 year 5 months to 4 years 11 months). Six TAV explants were found to have leaflet calcification (162.4 mm3; 58.8-603.0 mm3), and 8 had no calcification detectable by micro-computed tomography and histology. All samples had impaired leaflet kinematics. There was no significant difference in the hydrodynamic mean gradient between calcified (47.2 mm Hg; 26.6-74.1 mm Hg) and noncalcified (27.6 mm Hg; 15.2-36.7 mm Hg; P = 0.28) TAVs. Leaflet calcification had a weak but nonsignificant association with the hydrodynamic mean gradient (r = 0.42; P = 0.14). CONCLUSIONS: TAV function can be severely impacted by noncalcific and calcific mechanisms of tissue degeneration. Importantly, functional stenosis can occur in TAVs in the absence of obvious and significant calcification.


Assuntos
Valva Aórtica , Calcinose , Próteses Valvulares Cardíacas , Hidrodinâmica , Desenho de Prótese , Falha de Prótese , Sistema de Registros , Substituição da Valva Aórtica Transcateter , Microtomografia por Raio-X , Humanos , Idoso , Valva Aórtica/fisiopatologia , Valva Aórtica/diagnóstico por imagem , Valva Aórtica/cirurgia , Valva Aórtica/patologia , Calcinose/fisiopatologia , Calcinose/diagnóstico por imagem , Calcinose/patologia , Calcinose/cirurgia , Feminino , Idoso de 80 Anos ou mais , Masculino , Substituição da Valva Aórtica Transcateter/instrumentação , Substituição da Valva Aórtica Transcateter/efeitos adversos , Pessoa de Meia-Idade , Fatores de Tempo , Remoção de Dispositivo , Estenose da Valva Aórtica/fisiopatologia , Estenose da Valva Aórtica/diagnóstico por imagem , Estenose da Valva Aórtica/cirurgia , Hemodinâmica , Fenômenos Biomecânicos , Teste de Materiais , Gravação em Vídeo
8.
Zhongguo Yi Liao Qi Xie Za Zhi ; 48(3): 257-263, 2024 May 30.
Artigo em Chinês | MEDLINE | ID: mdl-38863090

RESUMO

The treatment of bone defects caused by fractures or bone tissue lesions has always been a difficult problem in the field of orthopedics. Implantation of high-performance titanium alloy prosthesis is an effective method to treat bone defects. 3D printing technology can produce low-modulus titanium alloy implants with porous structures, providing a better solution to the above problems. This technology is convenient to design and has a huge advantage in making orthopedic implants. The article used electron beam melting in 3D printing technology to create two samples of Ti-6Al-4V prosthesis, including solid structural pelvic prosthesis and porous structural pelvic prosthesis. The mechanical properties of the prosthesis showed that the yield and tensile strengths of the rod tensile specimen were 894 MPa and 956 MPa, respectively, and the compressive modulus and compressive strength of the porous pelvic prosthesis were 55 GPa and 65.2 MPa, respectively. The results of the L929 cytotoxicity assay and the MC3T3-E1 cell adhesion assay demonstrated good biocompatibility of the prosthetic samples. New Zealand white rabbits were used to prepare the femoral joint cavity defect models and two pelvic prostheses were implanted. A microscopic CT scan 4 weeks after implantation showed that the bone defect caused by the drill had healed and that the porous structure of the pelvic prosthesis formed a new trabecular structure within the hole. In conclusion, the 3D printed Ti-6Al-4V pelvic prosthesis has excellent mechanical properties, biocompatibility, and the ability to promote new bone growth.


Assuntos
Ligas , Materiais Biocompatíveis , Teste de Materiais , Impressão Tridimensional , Titânio , Animais , Coelhos , Próteses e Implantes , Camundongos , Desenho de Prótese , Porosidade , Ossos Pélvicos , Pelve
9.
Zhongguo Yi Liao Qi Xie Za Zhi ; 48(3): 264-270, 2024 May 30.
Artigo em Chinês | MEDLINE | ID: mdl-38863091

RESUMO

First of all, the overall framework of 3D printing is briefly introduced, including the basic principles of the additive manufacturing process, the classification and summary of the seven processes. Secondly, the common negative Poisson's ratio structure is introduced. Compared with the conventional structure, the negative Poisson's ratio structure has stronger energy absorption capacity, better fracture resistance and better indentation resistance, which are its advantages in printing manufacturing. Finally, 3D printing, the application of negative Poisson's ratio structure and the combination of the two are introduced from the different perspective of medical field, for example, the application of cardiovascular stent, biomedical material structure preparation, and lumbar disc implants. This paper suggests that the structural design of negative Poisson's ratio in 3D printing guides the development of new application directions in the medical field. Negative Poisson's ratio materials have a wide range of applications, not only in the medical field but also in mechanical equipment, automotive manufacturing, aerospace, and other high-tech industries.


Assuntos
Impressão Tridimensional , Distribuição de Poisson , Teste de Materiais , Materiais Biocompatíveis
10.
Sci Rep ; 14(1): 13569, 2024 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866844

RESUMO

Revolutionizing construction, the concrete blend seamlessly integrates human hair (HH) fibers and millet husk ash (MHA) as a sustainable alternative. By repurposing human hair for enhanced tensile strength and utilizing millet husk ash to replace sand, these materials not only reduce waste but also create a durable, eco-friendly solution. This groundbreaking methodology not only adheres to established structural criteria but also advances the concepts of the circular economy, representing a significant advancement towards environmentally sustainable and resilient building practices. The main purpose of the research is to investigate the fresh and mechanical characteristics of concrete blended with 10-40% MHA as a sand substitute and 0.5-2% HH fibers by applying response surface methodology modeling and optimization. A comprehensive study involved preparing 225 concrete specimens using a mix ratio of 1:1.5:3 with a water-to-cement ratio of 0.52, followed by a 28 day curing period. It was found that a blend of 30% MHA and 1% HH fibers gave the best compressive and splitting tensile strengths at 28 days, which were 33.88 MPa and 3.47 MPa, respectively. Additionally, the incorporation of increased proportions of MHA and HH fibers led to reductions in both the dry density and workability of the concrete. In addition, utilizing analysis of variance (ANOVA), response prediction models were created and verified with a significance level of 95%. The models' R2 values ranged from 72 to 99%. The study validated multi-objective optimization, showing 1% HH fiber and 30% MHA in concrete enhances strength, reduces waste, and promotes environmental sustainability, making it recommended for construction.


Assuntos
Materiais de Construção , Cabelo , Milhetes , Resistência à Tração , Humanos , Materiais de Construção/análise , Cabelo/química , Milhetes/química , Teste de Materiais , Força Compressiva
11.
J Mech Behav Biomed Mater ; 156: 106575, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38824865

RESUMO

Articular cartilage tissue exhibits a spatial dependence in material properties that govern mechanical behaviour. A mathematical model of cartilage tissue under one dimensional confined compression testing is developed for normal tissue that takes account of these variations in material properties. Modifications to the model representative of a selection of mechanisms driving osteoarthritic cartilage are proposed, allowing application of the model to both physiological and pathophysiological, osteoarthritic tissue. Incorporating spatial variations into the model requires the specification of more parameters than are required in the absence of these variations. A global sensitivity analysis of these parameters is implemented to identify the dominant mechanisms of mechanical response, in normal and osteoarthritic cartilage tissue, to both static and dynamic loading. The most sensitive parameters differ between dynamic and static mechanics of the cartilage, and also differ between physiological and osteoarthritic pathophysiological cartilage. As a consequence changes in cartilage mechanics in response to alterations in cartilage structure are predicted to be contingent on the nature of loading and the health, or otherwise, of the cartilage. In particular the mechanical response of cartilage, especially deformation, is predicted to be much more sensitive to cartilage stiffness in the superficial zone given the onset of osteoarthritic changes to material properties, such as superficial zone increases in permeability and reductions in fixed charge. In turn this indicates that any degenerative changes in the stiffness associated with the superficial cartilage collagen mesh are amplified if other elements of osteoarthritic disease are present, which provides a suggested mechanism-based explanation for observations that the range of mechanical parameters representative of normal and osteoarthritic tissue can overlap substantially.


Assuntos
Cartilagem Articular , Osteoartrite , Fenômenos Biomecânicos , Osteoartrite/fisiopatologia , Fenômenos Mecânicos , Modelos Biológicos , Humanos , Estresse Mecânico , Teste de Materiais , Suporte de Carga , Testes Mecânicos
12.
J Mech Behav Biomed Mater ; 156: 106607, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38830315

RESUMO

OBJECTIVES: The aim of the study was to evaluate the influence of surface finishing in three polymer-based composits (composits) on the result of a 3-point bending test using quantitative and qualitative fractography as well as microstructural characteristics. MATERIALS AND METHODS: 270 rectangular specimens (n = 30) of three composits were prepared, stored and tested according to NIST No. 4877. Prior testing, the samples were subjected to three surface treatments: 1) no treatment, to preserve the oxygen inhibition layer, 2) with FEPA P1200 (ANSI equivalent grit 600) SiC paper abraded surface, and 3) polished surface. A three-point bending testing was employed, followed by quantitative (assessment of reason for failure and fracture pattern) and qualitative (fracture mirror measurements) fractography, 3D and 2D surface imaging, surface roughness, reliability and Fe-SEM analysis. The mirror radius that runs in the direction of constant stress was used to calculate the mirror constant (A) using Orr's equation. Uni- and multifactorial ANOVA, Tukey's post hoc test, and Weibull analysis was performed for statistical analysis. RESULTS: Surface finishing has less influence on the fracture pattern, reliability and mechanical parameters and has no influence on the mirror constant. The amount of inorganic filler has a direct impact on flexural strength and modulus, while the ranking of materials was independent of surface treatment. Failures initiated by volume defects were the most common failure mode (77.0%) with surface defects accounting for 14.9% (edge) and 7.7% (corner). Polishing resulted in lower peak-to valley height compared to no treatment, both 3-4 times lower compared to the 600 grit treatment. The increase in roughness within the analyzed range did not lead to an increase in surface-related failures. CONCLUSIONS: The clear dominance of volume defects in all examined materials as a cause of material fracture reduces the impact of roughness on the measured properties. This insight was only possible using qualitative and quantitative research fractography.


Assuntos
Teste de Materiais , Polímeros , Propriedades de Superfície , Polímeros/química , Testes Mecânicos , Estresse Mecânico , Materiais Dentários/química , Fenômenos Mecânicos
13.
Sci Rep ; 14(1): 13262, 2024 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858417

RESUMO

The purpose of this study was to evaluate the fatigue survival of 5Y-PSZ zirconia infiltrated with an experimental glass and bonded onto dentin analogues. Disc-shaped specimens of a 5Y-PSZ (Katana UTML Kuraray Noritake) were cemented onto dentin analogs (NEMA G10) and divided into four groups (n = 15): Zctrl Group (control, without infiltration); Zglz Group (Glaze, compression surface); Zinf-comp Group (Experimental Glass, compression surface); Zinf-tens Group (Experimental Glass, tension surface). Surface treatments were varied. Cyclic fatigue loading, oblique transillumination, stereomicroscope examination, and scanning electron microscopy were performed. Fatigue data were analyzed (failure load and number of cycles) using survival analysis (Kaplan-Meier and Log-Rank Mantel-Cox). There was no statistically significant difference in fatigue survival between the Zglz, Zctrl, and Zinf-comp groups. The Zinf-tens group presented a significantly higher failure load when compared to the other groups and exhibited a different failure mode. The experimental glass effectively infiltrated the zirconia, enhancing structural reliability, altering the failure mode, and improving load-bearing capacity over more cycles, particularly in the group where the glass was infiltrated into the tensile surface of the zirconia. Glass infiltration into 5Y-PSZ zirconia significantly enhanced structural reliability and the ability to withstand loads over an increased number of cycles. This approach has the potential to increase the durability of zirconia restorations, reducing the need for replacements and save time and resources, promoting efficiency in clinical practice.


Assuntos
Dentina , Vidro , Teste de Materiais , Zircônio , Zircônio/química , Vidro/química , Dentina/química , Humanos , Microscopia Eletrônica de Varredura , Propriedades de Superfície
14.
Biomed Mater ; 19(4)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38838701

RESUMO

Although different fabrication methods and biomaterials are used in scaffold development, hydrogels and electrospun materials that provide the closest environment to the extracellular matrix have recently attracted considerable interest in tissue engineering applications. However, some of the limitations encountered in the application of these methods alone in scaffold fabrication have increased the tendency to use these methods together. In this study, a bilayer scaffold was developed using 3D-printed gelatin methacryloyl (GelMA) hydrogel containing ciprofloxacin (CIP) and electrospun polycaprolactone (PCL)-collagen (COL) patches. The bilayer scaffolds were characterized in terms of chemical, morphological, mechanical, swelling, and degradation properties; drug release, antibacterial properties, and cytocompatibility of the scaffolds were also studied. In conclusion, bilayer GelMA-CIP/PCL-COL scaffolds, which exhibit sufficient porosity, mechanical strength, and antibacterial properties and also support cell growth, are promising potential substitutes in tissue engineering applications.


Assuntos
Antibacterianos , Materiais Biocompatíveis , Ciprofloxacina , Gelatina , Hidrogéis , Teste de Materiais , Metacrilatos , Poliésteres , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Gelatina/química , Ciprofloxacina/farmacologia , Ciprofloxacina/química , Poliésteres/química , Antibacterianos/farmacologia , Antibacterianos/química , Materiais Biocompatíveis/química , Hidrogéis/química , Porosidade , Metacrilatos/química , Colágeno/química , Animais , Humanos , Proliferação de Células/efeitos dos fármacos
15.
BMC Oral Health ; 24(1): 660, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840111

RESUMO

BACKGROUND: Effects of ceramic translucency, layer thickness, and substrate colour on the shade of lithium disilicate glass-ceramic restorations proved to be significant in several studies, however, quantitative, numerical results on the relationship between the colour difference and these parameters are still lacking. The purpose of this in vitro study was to quantitatively determine how the colour reproduction ability of a lithium disilicate glass-ceramic is affected by its translucency, layer thickness, and substrate colour. METHODS: Ceramic samples were prepared from A2 shade IPS e.max CAD blocks with high and low translucencies (HT and LT) in a thickness range of 0.5-2.5 mm (+/- 0.05 mm). Layered samples were acquired utilizing composite substrates in 9 shades; transparent try-in paste was used. The spectral reflectance of the specimens was assessed under D65 standard illumination with a Konica Minolta CM-3720d spectrophotometer. The CIEDE2000 colour difference (ΔE00) between two samples was analysed using perceptibility and acceptability thresholds set at 50:50%. Statistical analysis involved linear regression analysis and the Kruskal-Wallis test. RESULTS: An increase in the thickness of 0.5 mm reduced the ΔE00 of the HT samples to 72.8%, and that of the T samples to 71.1% (p < 0.0001). 7 substrates with HT and LT specimens had significantly different results from the mean (p < 0.05). A thickness of 0.5 mm is not sufficient to achieve an acceptable result at any level of translucency, while the low translucency ceramic at a thickness of 1.5 mm gave acceptable results, except for severely discoloured substrates (ND8 and ND9). CONCLUSIONS: The colour reproduction ability of lithium disilicate glass-ceramics is significantly affected by their translucency, layer thickness, and 7 substrates out of 9 substrates examined.


Assuntos
Cerâmica , Cor , Porcelana Dentária , Porcelana Dentária/química , Cerâmica/química , Pigmentação em Prótese , Espectrofotometria , Teste de Materiais , Humanos , Propriedades de Superfície
16.
J Mater Sci Mater Med ; 35(1): 28, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38833196

RESUMO

AIM: This study aimed to comprehensively assess the biocompatibility and toxicity profiles of poly(methyl methacrylate) (PMMA) and its monomeric unit, methyl methacrylate (MMA), crucial components in dental materials for interim prosthetic restorations. METHODOLOGY: Molecular docking was employed to predict the binding affinities, energetics, and steric features of MMA and PMMA with selected receptors involved in bone metabolism and tissue development, including RANKL, Fibronectin, BMP9, NOTCH2, and other related receptors. The HADDOCK standalone version was utilized for docking calculations, employing a Lamarckian genetic algorithm to explore the conformational space of ligand-receptor interactions. Furthermore, molecular dynamics (MD) simulations over 100 nanoseconds were conducted using the GROMACS package to evaluate dynamic actions and structural stability. The LigandScout was utilized for pharmacophore modeling, which employs a shape-based screening approach to identify potential ligand binding sites on protein targets. RESULTS: The molecular docking studies elucidated promising interactions between PMMA and MMA with key biomolecular targets relevant to dental applications. MD simulation results provided strong evidence supporting the structural stability of PMMA complexes over time. Pharmacophore modeling highlighted the significance of carbonyl and hydroxyl groups as pharmacophoric features, indicating compounds with favorable biocompatibility profiles. CONCLUSION: This study underscores the potential of PMMA in dental applications, emphasizing its structural stability, molecular interactions, and safety considerations. These findings lay a foundation for future advancements in dental biomaterials, guiding the design and optimization of materials for enhanced biocompatibility. Future directions include experimental validation of computational findings and the development of PMMA-based dental materials with improved biocompatibility and clinical performance.


Assuntos
Materiais Biocompatíveis , Materiais Dentários , Teste de Materiais , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Polimetil Metacrilato , Materiais Biocompatíveis/química , Polimetil Metacrilato/química , Materiais Dentários/química , Humanos , Ligantes , Simulação por Computador , Sítios de Ligação
17.
Med Sci Monit ; 30: e943353, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38825814

RESUMO

BACKGROUND Dentin contamination with hemostatic agents before bonding indirect restorations negatively affects the bond strength. However, the consensus on which materials could be used to clean contamination of hemostatic agents has not been explored. The aim of this study was to assess the effect of Katana Cleaner applied on the surface of dentin contaminated with hemostatic agents on the shear bond strength (SBS) of self-adhesive resin cement by comparing it with three other surface cleaners. MATERIAL AND METHODS Ninety dentin specimens were divided into a no contamination group (control) (n=10), 4 groups contaminated with 25% aluminum chloride (Viscostat Clear) (n=40), and 4 groups contaminated with 20% ferric sulfate (Viscostat) (n=40). Subsequently, 4 different cleaners were used for each contamination group (water rinse, phosphoric acid, chlorhexidine, and Katana Cleaner). Then, self-adhesive resin cement was directly bonded to the treated surfaces. All specimens were subjected to 5000 thermal cycles of artificial aging. The shear bond strength was measured using a universal testing machine. RESULTS Two-way analysis of variance showed that the contaminant type as the main factor was statistically non-significant (p=0.655), cleaner type as the main factor was highly significant (p<0.001), and interaction between the contaminant and cleaner was non-significant (p=0.51). The cleaner type was the main factor influencing the bond strength. Phosphoric acid and chlorhexidine showed better performance than Katana Cleaner. CONCLUSIONS Cleaning dentin surface contamination with phosphoric acid and chlorhexidine had better performance than with Katana Cleaner.


Assuntos
Colagem Dentária , Dentina , Hemostáticos , Cimentos de Resina , Resistência ao Cisalhamento , Humanos , Dentina/efeitos dos fármacos , Hemostáticos/farmacologia , Colagem Dentária/métodos , Clorexidina/análogos & derivados , Clorexidina/farmacologia , Teste de Materiais/métodos , Propriedades de Superfície/efeitos dos fármacos , Adesivos Dentinários , Compostos Férricos/química
18.
Medicine (Baltimore) ; 103(23): e38520, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847663

RESUMO

BACKGROUND: To elucidate the differences in mechanical performance between a novel axially controlled compression spinal rod (ACCSR) for lumbar spondylolysis (LS) and the common spinal rod (CSR). METHODS: A total of 36 ACCSRs and 36 CSRs from the same batch were used in this study, each with a diameter of 6.0 mm. Biomechanical tests were carried out on spinal rods for the ACCSR group and on pedicle screw-rod internal fixation systems for the CSR group. The spinal rod tests were conducted following the guidelines outlined in the American Society for Testing and Materials (ASTM) F 2193, while the pedicle screw-rod internal fixation system tests adhered to ASTM F 1798-97 standards. RESULTS: The stiffness of ACCSR and CSR was 1559.15 ±â€…50.15 and 3788.86 ±â€…156.45 N/mm (P < .001). ACCSR's yield load was 1345.73 (1297.90-1359.97) N, whereas CSR's was 4046.83 (3805.8-4072.53) N (P = .002). ACCSR's load in the 2.5 millionth cycle of the fatigue four-point bending test was 320 N. The axial gripping capacity of ACCSR and CSR was 1632.53 ±â€…165.64 and 1273.62 ±â€…205.63 N (P = .004). ACCSR's torsional gripping capacity was 3.45 (3.23-3.47) Nm, while CSR's was 3.27 (3.07-3.59) Nm (P = .654). The stiffness of the pedicle screws of the ACCSR and CSR group was 783.83 (775.67-798.94) and 773.14 (758.70-783.62) N/mm (P = .085). The yield loads on the pedicle screws of the ACCSR and CSR group was 1345.73 (1297.90-1359.97) and 4046.83 (3805.8-4072.53) N (P = .099). CONCLUSION: Although ACCSR exhibited lower yield load, stiffness, and fatigue resistance compared to CSR, it demonstrated significantly higher axial gripping capacity and met the stress requirement of the human isthmus. Consequently, ACCSR presents a promising alternative to CSR for LS remediation.


Assuntos
Vértebras Lombares , Teste de Materiais , Parafusos Pediculares , Espondilólise , Vértebras Lombares/cirurgia , Humanos , Fenômenos Biomecânicos , Espondilólise/cirurgia , Espondilólise/fisiopatologia , Fixadores Internos , Testes Mecânicos
19.
PLoS One ; 19(6): e0304797, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38829883

RESUMO

Partially encased concrete (PEC) has better mechanical properties as a structure where steel and concrete work together. Due to the increasing amount of construction waste, recycled aggregate concrete (RAC) is being considered by more people. However, although RAC has more points, the performance is inferior to natural aggregate concrete (NAC). To narrow or address this gap, lightweight, high-strength and corrosion-resistant CFRP can be used, also protecting the steel flange of the PEC structure. Therefore, carbon fiber reinforced polymer (CFRP) confined partially encased recycled coarse aggregate concrete columns were studied in this paper. With respect to different slenderness ratios, recycled coarse aggregate(RCA) replacement ratios, and number of CFRP layers, the performance of the proposed CFRP restrained columns are reported. The RCA replacement ratio is analyzed to be limited negative impact on the bearing capacity, generally within 6%. As for the slenderness ratio, the bearing capacity increased with it. However, wrapping CFRP significantly increased the bearing capacity. Considering the arch factor, a simple formula for calculating the ultimate strength of CFRP-confined partially encased RAC columns is developed based on EC4 and GB50017-2017. By comparison with the experimental values, the error is within 10%.


Assuntos
Fibra de Carbono , Força Compressiva , Materiais de Construção , Polímeros , Reciclagem , Fibra de Carbono/química , Materiais de Construção/análise , Polímeros/química , Teste de Materiais , Aço/química
20.
Pediatr Dent ; 46(3): 192-198, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38822501

RESUMO

Purpose: The purposes of this study were to evaluate the effect of silver diammine fluoride (SDF) on the shear bond strength (SBS) of pink opaquer (PO) compared to resin-modified glass ionomer (RMGI) and conventional composite (COMP) on demineralized dentin, and also to investigate the mode of failure (MOF). Methods: Sixty extracted third molars were prepared, demineralized for 14 days, and divided into four groups: (1) COMP; (2) SDF+PO; (3) SDF+RMGI; and (4) SDF+COMP (restoration size: two by two mm). SBS, MOF, modified adhesive remnant index (MARI), and remnant adhesive volume (RAV) were evaluated using an Instron® machine, light microscopy, 3D digital scanner ( 3Shape©), and GeoMagic Wrap© software. Results: There was no significant difference in SBS (MPa) among the COMP mean??standard deviation (2.5±1.59), SDF+COMP (2.28±1.05), SDF+PO (3.31±2.63), and SDF+RMGI groups (3.74±2.34). There was no significant difference in MOF and MARI among the four groups (P>0.05). There was no significant difference in RAV (mm3) among the COMP (0.5±0.33), SDF+COMP (0.39±0.44), SDF+PO (0.42±0.38), and SDF+RMGI groups (0.42±0.38; P>0.05). A significant correlation existed between MOF and RAV (R equals 0.721; P<0.001). MOF, MARI, and RAV did not show any correlations with SBS (P>0.05). Conclusions: Silver diammine fluoride does not affect shear bond strength between carious dentinal surface and tooth color restorative materials. The amount of material left on the interface is not related to the amount of shear force needed to break the restoration.


Assuntos
Resinas Compostas , Colagem Dentária , Dentina , Fluoretos Tópicos , Resistência ao Cisalhamento , Compostos de Prata , Humanos , Compostos de Prata/química , Dentina/efeitos dos fármacos , Resinas Compostas/química , Cimentos de Ionômeros de Vidro/química , Compostos de Amônio Quaternário/química , Teste de Materiais , Restauração Dentária Permanente/métodos , Materiais Dentários/química , Análise do Estresse Dentário , Desmineralização do Dente/prevenção & controle , Técnicas In Vitro , Resinas Acrílicas/química , Cor
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...