Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add filters








Language
Year range
1.
Acta sci., Biol. sci ; 43: e56198, 2021. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1461017

ABSTRACT

The aim of this work was to evaluate the growth and the proximate compositionof the mycelium-based bocaiuva pulp with the edible mushroom Pleurotusostreatuson green bocaiuva flour added with different sources of nitrogen (urea, ammonium nitrate and sulfate ammonia). Growth was monitored by kinectics. At the end, the proximate composition of the best three treatments (dehydrated green bocaiuva pulp and water, T1; dehydrated green bocaiuva pulp and ammonium nitrate, T3; and green bocaiuva pulp/wheat bran and ammonium nitrate, T7) was determined. Ammonium nitrate was the nitrogen source that showed the greatest growth in both substrates (T3:8.33 cm and T7:7.67 cm) in relation to the other treatments (4.67 to 7.17 cm), with emphasis on the green bocaiuva pulp. The substrate with green bocaiuva pulp and water was the one that showed the highest growth (7.50 cm), which was close to the treatment with mixed substrate and ammonium nitrate (7.67 cm). The treatment with the green bocaiuva pulp and ammonium nitrate (T3) was highlighted due to its significant increase in proteins (9.42 g 100 g-1) and fibers (5.21 g 100 g-1), and decrease in carbohydrates (9.52 g 100 g-1), in comparison to the other treatments T7 (8.94, 2.16, and 5.99 g 100 g-1, respectively) and T1 (2.78, 4.33, and 2.28 g 100 g-1, respectively). The product obtained from the growth of P. ostreatusin green bocaiuva pulp presents promising perspectives to be utilized as raw material for the development of new food products with added nutritional value.


Subject(s)
Nitrogen , Pleurotus/genetics , Substrates for Biological Treatment/analysis
2.
Biosci. j. (Online) ; 32(4): 1040-1048, july/aug. 2016.
Article in English | LILACS | ID: biblio-965644

ABSTRACT

Xylanases are useful in several industrial segments, including pulp and paper bleaching, animal feed, and bread-making processes. However, the industrial use of these enzymes is closely related to its production cost and its catalytic properties. The process of solid state fermentation enables the use of agro-industrial residues as substrates for microbial cultivation and enzymes production, reducing costs. In the present study, different cultivation parameters were evaluated for the xylanase production by the thermophilic fungus Thermoascus aurantiacus, by solid state fermentation, using agro-industrial residues as substrates. High production of xylanase (1701.9 U g-1 of dry substrate) was obtained using wheat bran containing 65% of initial moisture, at 120 h of cultivation, and 45°C. The xylanase showed optimal activity at pH 5.0 and 75°C; its stability was maintained at pH 3.0­11.0. The enzyme retained its catalytic potential after 1 h, at 75°C. The enzymatic extract produced under optimized conditions showed reduced activities of endoglucanase and FPase. Our results, including the xylanase production by T. aurantiacus in low-cost cultivation medium, high structural stability of the enzyme, and reduced cellulolytic activity, encourage the application of this enzymatic extract in pulp and paper bleaching processes.


As xilanases apresentam aplicabilidade em diferentes segmentos industriais, como: branqueamento de papel e celulose, ração animal e panificação. No entanto, a utilização industrial dessas enzimas está intimamente relacionada com seu custo de produção e suas propriedades catalíticas. O processo de fermentação em estado sólido possibilita o uso de resíduos agroindustriais como substratos, para o cultivo microbiano e produção de enzimas, reduzindo o custo da produção enzimática. No presente trabalho, diferentes parâmetros de cultivo foram avaliados para produção de xilanase por cultivo em estado sólido do fungo termófilo Thermoascus aurantiacus, utilizando resíduos agroindustriais como substratos. A maior produção de xilanase, 1701,9 U g-1 de substrato seco, foi obtida no cultivo em farelo de trigo, contendo 65% de umidade inicial, em 120 horas de cultivo a 45°C. A xilanase produzida apresentou atividade ótima em pH 5,0 a 75°C, mantendo sua estabilidade em pH 3,0 a 11,0. A enzima manteve seu potencial catalítico após 1 h a 75°C. O extrato enzimático produzido nas condições otimizadas apresentou reduzida atividade de endoglucanase e FPase. Os resultados obtidos no presente trabalho (produção de xilanase pelo fungo em meios de cultivo de baixo custo, elevada estabilidade estrutural da enzima e reduzida atividade celulolítica) estimulam a aplicação desse complexo enzimático em processos de branqueamento de papel e celulose.


Subject(s)
Paper , Waste Products , Cellulose , Thermoascus , Fermentation
3.
Electron. j. biotechnol ; 18(4): 314-319, July 2015. graf, tab
Article in English | LILACS | ID: lil-757870

ABSTRACT

Background β-Glucosidases catalyze the hydrolysis of cellobiose and cellodextrins, releasing glucose as the main product. This enzyme is used in the food, pharmaceutical, and biofuel industries. The aim of this work is to improve the β-glucosidase production by the fungus Lichtheimia ramosa by solid-state fermentation (SSF) using various agroindustrial residues and to evaluate the catalytic properties of this enzyme. Results A high production of β-glucosidase, about 274 U/g of dry substrate (or 27.4 U/mL), was obtained by cultivating the fungus on wheat bran with 65% of initial substrate moisture, at 96 h of incubation at 35°C. The enzymatic extract also exhibited carboxymethylcellulase (CMCase), xylanase, and β-xylosidase activities. The optimal activity of β-glucosidase was observed at pH 5.5 and 65°C and was stable over a pH range of 3.5-10.5. The enzyme maintained its activity (about 98% residual activity) after 1 h at 55°C. The enzyme was subject to reversible competitive inhibition with glucose and showed high catalytic activity in solutions containing up to 10% of ethanol. Conclusions β-Glucosidase characteristics associated with its ability to hydrolyze cellobiose, underscore the utility of this enzyme in diverse industrial processes.


Subject(s)
beta-Glucosidase/metabolism , Mucorales/enzymology , Temperature , Cellulases , Cellulases/biosynthesis , Agribusiness , Biocatalysis , Fermentation , Hydrogen-Ion Concentration , Industrial Waste
4.
Braz. j. microbiol ; 35(4): 337-344, Oct.-Dec. 2004. tab, graf
Article in English | LILACS, SES-SP | ID: lil-402620

ABSTRACT

Estudou-se a influência das concentrações iniciais, no meio de Sauton, de asparagina e glicerol sobre as produtividades, expressas em unidades formadoras de colônias e biomassa microbiana, referentes aos cultivos submersos do Mycobacterium bovis, em biorreator de 20 mL. As concentrações iniciais de 2,27 e 25 mL/L de asparagina e glicerol, respectivamente, conduziram à maior produtividade, em unidades formadoras de colônias, a saber 2,7.106 colônias/mg.dia. Por outro lado, as concentrações de 4,54 e 25 mL/L dos mesmos componentes, corresponderam à melhor produtividade em biomassa, a saber: 2,5 g/dia. Através das análises dos consumos relativos de asparagina e glicerol (50 e 26 per center respectivamente), verificou-se também que as concentrações destes componentes podem ser reduzidas na composição original do meio de Sauton, com o objetivo de obter uma produção otimizada de vacina BCG em bioreator.


Subject(s)
Asparagine , BCG Vaccine , Glycerol , Mycobacterium bovis , In Vitro Techniques , Culture Media
5.
Braz. j. microbiol ; 34(1): 27-32, Jan.-Apr. 2003. tab, graf
Article in English | LILACS, SES-SP | ID: lil-344561

ABSTRACT

Polysaccharide of N. meningitidis serogroup C constitutes the antigen for the vaccine against meningitis. The goal of this work was to compare three cultivation media for production of this polysaccharide: Frantz, modified Frantz medium (with replacement of glucose by glycerol), and Catlin 6 (a synthetic medium with glucose). The comparative criteria were based on the final polysaccharide concentrations and the yield coefficient cell/polysaccharide (Y P/X). The kinetic parameters: pH, substrate consumption and cell growth were also determined. For this purpose, 9 cultivation runs were carried out in a 80 L New Brunswick bioreactor, under the following conditions: 42 L of culture medium, temperature 35°C, air flow 5 L/min, agitation frequency 120 rpm and vessel pressure 6 psi, without dissolved oxygen or pH controls. The cultivation runs were divided in three groups, with 3 repetitions each. The cultivation using the Frantz medium presented the best results: average of final polysaccharide concentration = 0.134 g/L and Y P/X=0.121, followed by Catlin 6 medium, with results of 0.095 g/L and 0.067 respectively. Considering the principal advantages in the use of the synthetic medium, i.e. facilitation of a cultivation and purification steps of the polysaccharide production process, there is a possibility that in the near future, Catlin 6 will replace the traditional Frantz medium.


Subject(s)
In Vitro Techniques , Neisseria meningitidis, Serogroup C/genetics , Neisseria meningitidis, Serogroup C/isolation & purification , Neisseria meningitidis, Serogroup C/pathogenicity , Polysaccharides, Bacterial/analysis , Polysaccharides, Bacterial/isolation & purification , Meningococcal Vaccines/isolation & purification , Culture Media
6.
Braz. j. microbiol ; 32(4): 305-310, Oct.-Dec. 2001. tab, graf
Article in English | LILACS, SES-SP | ID: lil-314803

ABSTRACT

Capsular polysaccharide, extracted from microorganism cultivations, is the principal antigen for elaboration of vaccine against the disease caused by Neisseria meningitidis serogroup C. The final protein content allowed in this vaccine is 1 (per cent). In order to find a relationship between nitrogen consumption and cell growth, including polysaccharide production, and cell nitrogen content, cultivations were carried out in an 80 liters bioreactor (total capacity), under the following conditions: Frantz medium; temperature of 35ºC; air flow of 5L/min (0.125vvm); agitation frequency of 120 rpm and vessel pressure of 6 psi (k(L)a=0.07min(-1).Concentrations of biomass, total polysaccharide, cellular nitrogen, residual organic and inorganic nitrogen in the medium were measured during cultivation. From five cultivations carried out under the same conditions, a mean cell nitrogen percentage of 12.6(per cent)(w/w) in respect to the dry biomass was found. The inorganic nitrogen in the medium did not change significantly along the cultivation time, whereas the organic nitrogen consuption was linearly related to cell growth, with constant yeield factors (average of 8.44). Polysaccharide production kinetics followed the cell growth kinetics until the beginning of the stationary growth phase. A supplemental polysaccharide production was observed until the end of cultivation, but without cell nitrogen absorption. Thus, the results indicate that polysaccharide is produced in two phases, being the first one biomass formation followed by non-associated to growth. /


Subject(s)
Polysaccharides , Polysaccharides, Bacterial , Bacterial Vaccines , Neisseria meningitidis , In Vitro Techniques , Bacterial Proteins/analysis , Bacterial Proteins/isolation & purification , Culture Media , Serologic Tests/methods
7.
Arq. biol. tecnol ; 39(1): 215-220, mar. 1996. tab, graf
Article in English | LILACS, SES-SP | ID: lil-233624

ABSTRACT

Polysaccharide of N. meningitidis serogroup C constitutes the antigen for the production of the specific vaccine against this serogroup. The production kinetics of polysaccharide (serogroup C) was studies in five cultivations carried out in an 80 L fermenter (total capacity), under the following process conditions: Frantz medium; temperature 35§C; air flow 5 L.min-1 (o.125 vvm); agitation frequency 120 rpm and vessel pressure 6 psi. Global yeld factors and ield coefficients were calculated. It was observed two distinguished polysaccharide production phases: growth associated and a growth non-associated. The cell productivity was about 0.11 (g drymass. L -1.h-1) and polysaccharide productivity near 7.0 (mg polysac. L-1. h-1)(AB)


Subject(s)
Polysaccharides , Vaccines , Meningitis , Neisseria
SELECTION OF CITATIONS
SEARCH DETAIL