Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Language
Year range
1.
Journal of Veterinary Science ; : 531-540, 2017.
Article in English | WPRIM | ID: wpr-11455

ABSTRACT

Ribosomal protein L21 (RPL21) is a structural component of the 60S subunit of the eukaryotic ribosome. This protein has an important role in protein synthesis and the occurrence of hereditary diseases. Pig is a common laboratory model, however, to the best of our knowledge, its RPL21 gene has not been cloned to date. In this study, we cloned and identified the full-length sequence of the pig RPL21 gene for the first time. In addition, we examined its expression pattern and function by using overexpression or knockdown approaches. As a result, we obtained a 604 bp segment that contains a 483 bp open reading frame encoding 160 amino acids. The pig RPL21 gene is located in the “+” strand of chromosome 11, which spans 2167 bp from 4199792 to 4201958. Pig RPL21 protein has nine strands and two helices in its secondary structure. Pig RPL21 is predominantly expressed in ovary and lung, at lower levels in kidney, small intestine, and skin, and at the lowest levels in heart and liver. Furthermore, RPL21 expression is closely connected with cell proliferation and cell cycle arrest. The results are intended to provide useful information for the further study of pig RPL21.


Subject(s)
Female , Amino Acids , Cell Cycle Checkpoints , Cell Proliferation , Chromosomes, Human, Pair 11 , Clone Cells , Cloning, Molecular , Gene Expression , Genetic Diseases, Inborn , Heart , Intestine, Small , Kidney , Liver , Lung , Open Reading Frames , Ovary , Ribosomal Proteins , Ribosomes , Skin , Sus scrofa
2.
Tissue Engineering and Regenerative Medicine ; (6): 557-566, 2017.
Article in English | WPRIM | ID: wpr-646597

ABSTRACT

Spermatogonial stem cells (SSCs) are essential for spermatogenesis throughout the lifespan of the male. However, the rarity of SSCs has raised the need for an efficient selection method, but little is known about culture conditions that stimulate monkey SSC proliferation in vitro. In this study, we report the development of effective enrichment techniques and in vitro culturing of germ cells from pre-pubertal monkey testes. Testis cells were analyzed by fluorescence-activated cell sorting techniques and were transplanted into the testes of nude mice to characterize SSCs. Thy-1-positive cells showed a higher number of colonies than the unselected control after xenotransplantation. Extensive colonization of monkey cells in the mouse testes indicated the presence of highly enriched populations of SSCs in the Thy-1-positive sorted cells. Furthermore, monkey testis cells were enriched by differential plating using extracellular matrix, laminin, and gelatin, and then cultured under various conditions. Isolation of monkey testicular germ cells by differential plating increased germ cell purity by 2.7-fold, following the combinational isolation method using gelatin and laminin. These enriched germ cells actively proliferated under culture conditions involving StemPro medium supplemented with bFGF, GDNF, LIF, and EGF at 37 ℃. These results suggest that the enrichment and in vitro culture method proposed in the present study for harvesting a large number of functionally active monkey SSCs can be applied as the basis for efficient in vitro expansion of human SSCs.


Subject(s)
Animals , Humans , Male , Mice , Colon , Epidermal Growth Factor , Extracellular Matrix , Flow Cytometry , Gelatin , Germ Cells , Glial Cell Line-Derived Neurotrophic Factor , Haplorhini , In Vitro Techniques , Laminin , Methods , Mice, Nude , Spermatogenesis , Stem Cells , Testis , Transplantation, Heterologous
3.
Laboratory Animal Research ; : 90-93, 2014.
Article in English | WPRIM | ID: wpr-124661

ABSTRACT

This study was performed to investigate the expression of two porcine endogenous retrovirus (PERV) elements, PERV gag and full-length conserved PERV, in blood cells collected periodically from organ-recipient monkeys that underwent pig to non-human primate xenotransplantation. The heart and kidney-respectively acquired from alpha-1,3-galactosyltransferase knockout (GT-KO) pigs that survived for24 and 25 days-were xenografted into cynomolgus monkeys. The two PERV elements expressed in the xenografted GT-KO pig organs were not present in the blood cells of the recipient monkeys. In the present study, we deduced that PERVs are not transmitted during GT-KO pig to monkey xenotransplantation.


Subject(s)
Blood Cells , Endogenous Retroviruses , Haplorhini , Heart , Heterografts , Macaca fascicularis , Primates , Swine , Transplantation, Heterologous
4.
Journal of Veterinary Science ; : 249-256, 2013.
Article in English | WPRIM | ID: wpr-92907

ABSTRACT

This study was conducted to investigate whether administration of IH901, a ginseng intestinal metabolite, ameliorates exercise-induced oxidative stress while preserving antioxidant defense capability in rat skeletal muscles and lung. Eight adult male Sprague-Dawley rats per group were randomly assigned to the resting control, exercise control, resting with IH901 (25, 50, and 100 mg/kg) consumption (R/IH901), or exercise with IH901 (25, 50, and 100 mg/kg) consumption (E/IH901) group. The trained groups ran 35 min 2 days/week for 8 weeks. To analyze the IH901-training interaction, serum biochemical analysis, lipid peroxidation, citrate synthase, protein oxidation, antioxidant and superoxide dismutase in skeletal muscles and lung tissue were measured. Compared to the exercise control group, animals that consumed IH901 had significantly increased exercise endurance times (p < 0.05) and decreased plasma creatine kinase and lactate dehydrogenase levels (p < 0.05), while those in the E/IH901 groups had increased citrate synthase and anti-oxidant enzymes and decreased lipid peroxidation and protein oxidation (p < 0.05). In conclusion, IH901 consumption in aging rats after eccentric exercise has beneficial effects on anti-inflammatory and anti-oxidant activities through down-regulation of pro-inflammatory mediators, lipid peroxidation, and protein oxidation and up-regulation of anti-oxidant enzymes.


Subject(s)
Animals , Male , Rats , Aging , Antioxidants/administration & dosage , Dose-Response Relationship, Drug , Lung/drug effects , Muscle, Skeletal/drug effects , Oxidative Stress/drug effects , Panax/chemistry , Physical Conditioning, Animal , Rats, Sprague-Dawley , Sapogenins/administration & dosage , Specific Pathogen-Free Organisms
SELECTION OF CITATIONS
SEARCH DETAIL